精英家教网 > 高中数学 > 题目详情

已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD = AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当时,求三棱锥F-DEG的体积V.

(1)证明见解析  (2)证明见解析  (3)

解析试题分析:(1)在等边三角形中,由,可得,在折叠后的三棱锥中也成立,故有,再根据直线和平面平行的判定定理证的平面.
(2)在等边中,的中点,所以,折叠后可证得,且.在三棱锥中,由,由勾股定理可得,从而,故可证得平面.
(3)由(1)可知,再结合(2)可得平面.最后再由,运算可求得结果.
试题解析:(1)证:在等边中,,∴
在折叠后的三棱锥中也成立,∴
在平面外,在平面内,∴平面.
(2)证:在等边中,的中点,所以,折叠后,
∵ 在中,
,因此
相交于,∴平面
(3)解:由(1)可知,结合(2)可得:平面,∴
时,
.
考点:线面平行的判定定理;线面垂直的判定定理;等体积法求体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面且边长为的菱形,侧面 是等边三角形,且平面⊥底面

(1)若的中点,求证:平面
(2)求证:
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PA与平面PBC所成角的正弦值;
(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。

(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分14分)如图在三棱锥中,分别为棱的中点,已知

求证(1)直线平面
(2)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.

(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在棱长为a的正方体ABCDA1B1C1D1中,MAA1的中点,则点A1到平面MBD的距离是______________

查看答案和解析>>

同步练习册答案