精英家教网 > 高中数学 > 题目详情

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。

(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。

(1)见解析;(2)

解析试题分析:(1)要证,可转化为证OB⊥平面ABC,而根据圆的切线性质、圆柱母线定义可知,即OB⊥平面ABC;(2)三棱锥A-BOC的体积等于,在RtΔOA B中,AB=,由题意知,故,代入公式即可。
试题解析: (1)连结OB,由圆的切线性质有OB⊥BC,圆柱母线性质有,又
∴OB⊥平面ABC,∴OB⊥AC。
(2)在RtΔOA B中,AB=
又∵∠ACB就是AC与底面⊙O所成角,,
       
考点:(1)圆的切线性质、圆柱母线定义;(2)线面垂直判定及性质定理的应用;(3)三棱锥体积公式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且

(1)求证:平面平面;
(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面,分别为,的中点.
(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD = AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当时,求三棱锥F-DEG的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在侧棱垂直于底面三棱柱中,,点的中点.

(1)求证:
(2)求证: 
(3)求三棱锥的体积.

 

 
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是平行四边形,平面的中点.
(1)求证:平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A是△BCD平面外的一点,E,F分别是BC,AD的中点.
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱的底面为等腰直角三角形,分别是的中点。求异面直线所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

长方体的顶点均在同一个球面上,,则两点间的球面距离为               .

查看答案和解析>>

同步练习册答案