如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.
(1)求证:;
(2)求证:
(3)求三棱锥的体积.
|
|
(1)证明:在中,由勾股定理得
为直角三角形,即.又面,,,面,;
(2)证明:设交于点,则为的中点,连接,则为的中位线,
则在中,∥,又面,则∥面;
(3).
解析试题分析:(1)由勾股定理得,由面得到,从而得到面,故;(2)连接交于点,则为的中位线,得到∥,从而得到∥面;(3)过作垂足为,面,面积法求,求出三角形的面积,代入体积公式进行运算.
试题解析:(1)证明:在中,由勾股定理得为直角三角形,即.
又面,,,面,.
(2)证明:设交于点,则为的中点,连接,则为的中位线,
则在中,∥,又面,则∥面.
(3)在中过作垂足为,
由面⊥面知,面,.
而,,.
考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(1)求证:平面;
(2)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,⊥底面,底面
为正方形,,,分别是,的 中点.
(1)求证:平面;
(2)求证:;
(3)若是线段上一动点,试确定点位置,
使平面,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。
(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中-A BC中,AB AC,AB=AC=2,=4,点D是BC的中点.
(1)求异面直线与所成角的余弦值;
(2)求平面与所成二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com