精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,⊥底面,底面  
为正方形,分别是的 中点.
(1)求证:平面
(2)求证:
(3)若是线段上一动点,试确定点位置,
使平面,并证明你的结论.

(1)详见解析;(2) 详见解析; (3)G是线段AD的中点.

解析试题分析:(1)证线面平行主要是利用线面平行的判定定理,其关键是找到面内直线与该直线平行,并要注明所证直线在面外的;2)证明线线垂直主要是转化为直线与平面垂直来证明的,而直线与平面垂直的证明又主要是通过证明直线与平面内的两条相交直线都垂直来实现的,再注意一直线垂直两平行线中的一条必垂直于另一条;(3)先由图形直观分析出点G应为线段AD的中点,再证明.
试题解析:(1)证明:分别是的 中点,,又,.
(2)因为四边形ABCD为正方形,
(3)G是线段AD的中点时,GF平面PCB.证明如下:
取BC的中点为H,连结DH,HF;PD=PC,DHPC;又BC平面PDC,BCDH,DH平面PCB.
四边形DGFH为平行四边形,平面PCB.
考点:1.线面平行;2.线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。

求证:(1)PA∥平面BDE      (4分)
(2)平面PAC平面BDE(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面为矩形,分别为的中点.
(1) 求证:
(2) 求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面,分别为,的中点.
(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图. 直三棱柱ABC —A1B1C1中,A1B1= A1C1,点D、E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.
求证:(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在侧棱垂直于底面三棱柱中,,点的中点.

(1)求证:
(2)求证: 
(3)求三棱锥的体积.

 

 
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱锥及其侧视图、俯视图如图所示.设分别为线段的中点,为线段上的点,且.

(1)证明:为线段的中点;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.

(1)证明:O1′,A′,O2,B四点共面;
(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中数学 来源: 题型:填空题


把正方形ABCD沿对角线AC折起,当A、B  C、D四点为顶点的三棱锥体积最大时,直线BD与平面ABC所成的角的大小为    

查看答案和解析>>

同步练习册答案