精英家教网 > 高中数学 > 题目详情
4.圆心在(3,-1),且截直线y=x-2所得弦长为6的圆方程为(x-3)2+(y+1)2=11.

分析 由条件求出弦心距,再利用弦长公式求出半径,即可求得圆的标准方程.

解答 解:设半径为r,由于弦长l=6,弦心距d=$\frac{|3+1-2|}{\sqrt{2}}$=$\sqrt{2}$,
∴r=$\sqrt{9+2}$=$\sqrt{11}$,故圆的方程为(x-3)2+(y+1)2=11.
故答案为:(x-3)2+(y+1)2=11.

点评 本题主要考查直线和圆的位置关系,求圆的标准方程,点到直线的距离公式,弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图:几何体ABCD-B1C1D1中,正方形BB1D1D⊥平面ABCD,D1D∥CC1,平面D1DCC1与与平面B1BCC1所成的二面角的余弦值为$\frac{2}{3}$,BC=3,CD=2CC1=2,AD=$\sqrt{5}$,AD∥BC,M为DD1上任意一点.
(1)当平面BC1M⊥平面BCC1B1时,求DM的长;
(2)若DM=$\frac{5}{4}$,求直线AD与平面BC1M所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线kx-y+2k+1=0与曲线C:y=3-$\sqrt{-{x}^{2}+4x-3}$恰有两个公共点,则k的取值范围是$\frac{8-\sqrt{19}}{15}$<k≤$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.抛物线的顶点在原点,对称轴是y轴,焦点在2x+3y-6=0上,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在三角形ABC中,内角A,B,C的对边分别为a,b,c,且sin(C+$\frac{π}{6}$)-cosC=$\frac{1}{2}$
(1)求角C的大小;
(2)若c=2$\sqrt{3}$,求当△ABC的周长最大时三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=$\sqrt{-sinx}$+$\sqrt{tanx-1}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆C的方程为x2+y2-4x=0,则圆心C到直线y=$\frac{x}{2}$+1的距离为(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=lg(10-x2),则f(x)的定义域为$(-\sqrt{10},\sqrt{10})$,f(x)最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示的框图,若输出的结果为2,则输入的实数x的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案