精英家教网 > 高中数学 > 题目详情
10.在正方体ABCD-A1B1C1D1中,E,F分别为CD和C1C的中点,则直线AE与D1F所成角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{7}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线AE与D1F所成角的余弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则A(2,0,0),E(0,1,0),D1(0,0,2),F(0,2,1),
$\overrightarrow{AE}$=(-2,1,0),$\overrightarrow{{D}_{1}F}$=(0,2,-1),
设直线AE与D1F所成角为θ,
则cosθ=$\frac{|\overrightarrow{AE}•\overrightarrow{{D}_{1}F}|}{|\overrightarrow{AE}|•|\overrightarrow{{D}_{1}F}|}$=$\frac{2}{\sqrt{5}•\sqrt{5}}$=$\frac{2}{5}$.
∴直线AE与D1F所成角的余弦值为$\frac{2}{5}$.

点评 本题考查两异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设x,y∈R,则“x2+y2≥4”是“x≥2且y≥2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设全集A={1,2,3},B={1,3,5,6,7},则A∩B=(  )
A.{1,3}B.{2,4,5,6,7,8}C.{5,6,7}D.{4,8}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l:ax+2y+3=0和圆C:(x-2)2+(y+3)2=4,且直线l和直线2x-y+5=0垂直.
(1)求实数a; 
(2)若直线l与圆C交于点A、B,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知两个动点A、B和一个定点M(x0,y0)均在抛物线C:y2=2px(p>0)上(A、B与M不重合).设F为抛物线的焦点,Q为其对称轴上一点,若$(\overrightarrow{QA}+\frac{1}{2}\overrightarrow{AB})•\overrightarrow{AB}=0$,且$|\overrightarrow{FA}|$、$|\overrightarrow{FM}|$、$|\overrightarrow{FB}|$成等差数列.
(Ⅰ)求$\overrightarrow{OQ}$的坐标(可用x0、y0和p表示);
(Ⅱ)若$|\overrightarrow{OQ}|\;=3$,$|\overrightarrow{FM}|\;=\frac{5}{2}$,A、B两点在抛物线C的准线上的射影分别为A1、B1,求四边形ABB1A1面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥F-ABCD中,底面ABCD是平行四边形,AB=4,AD=8,∠BAD=60°,FA⊥平面ABCD且FA=12,点E在FA上,FC∥平面BED,
(1)求$\frac{FE}{AE}$的值;
(2)求A到平面BED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(5$\sqrt{3}$cosx,cosx),$\overrightarrow{b}$=(sinx,2cosx),记函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2
(1)求函数f(x)的最小正周期;
(2)求f(x)单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式x2(x-4)≥0的解集是{x|x≥4或x=0}.

查看答案和解析>>

同步练习册答案