精英家教网 > 高中数学 > 题目详情
5.已知直线l:ax+2y+3=0和圆C:(x-2)2+(y+3)2=4,且直线l和直线2x-y+5=0垂直.
(1)求实数a; 
(2)若直线l与圆C交于点A、B,求△ABC的面积.

分析 (1)利用两直线垂直,斜率乘积等于-1,即可求a的值.
(2)直线l与圆C交于点A、B,求出弦长AB,利用圆心到直线l的距离就是高,可得△ABC的面积.

解答 解:(1)由题意:直线l:ax+2y+3=0与直线2x-y+5=0垂直,
可得:$-\frac{a}{2}×2=-1$,
解得:a=4.
故得实数a的值为:4.
所以直线l为:4x+2y+3=0.
(2)由(1)可得直线l为:4x+2y+3=0.圆C:(x-2)2+(y+3)2=4,圆心(2,-3),半径r=2.
直线l与圆C交于点A、B,
圆心到直线的距离d=$\frac{|4×2-2×3+3|}{\sqrt{16+4}}$=$\frac{\sqrt{5}}{2}$,
弦长|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{4-\frac{5}{4}}$=$\sqrt{11}$,
∴△ABC的面积S=$\frac{1}{2}$|AB|×d=$\frac{1}{2}×\frac{\sqrt{5}}{2}×\sqrt{11}=\frac{\sqrt{55}}{4}$.

点评 本题考了两条直线垂直的斜率关系和直线与圆的弦长的运用问题.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2+x-2≤0},集合B为正整数集,则A∩B等于(  )
A.{-1,0,1,2}B.{-2,-1,0,1}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=x+$\frac{2}{x}$,则曲线f(x)在点(1,f(1))处的切线方程为(  )
A.2x-y+1=0B.x-y-4=0C.x+y-2=0D.x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{{{{(2+i)}^2}}}{i}$(其中i为虚数单位)的虚部等于(  )
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,在上、下底面对应边的比为1:2的三棱台中,过上底面一边A1B1作一个平行于棱C1C的平面A1B1EF,则这个平面分三棱台成两部分的体积之比为(  )
A.2:1B.3:1C.3:2D.3:4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正方体ABCD-A1B1C1D1中,E,F分别为CD和C1C的中点,则直线AE与D1F所成角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.cos390°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的标准方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-{y^2}=1$D.$\frac{x^2}{2}-{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是$\frac{1}{2}$.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令ξ表示该公司的资助总额.
(1)写出ξ的分布列;
(2)求随机变量ξ的均值E(ξ)和方差D(ξ).

查看答案和解析>>

同步练习册答案