ÉèµãAn£¨xn£¬0£©£¬Pn£¨xn£¬2n-1£©ºÍÅ×ÎïÏßCn£ºy=x2+anx+bn£¨n¡ÊN*£©£¬ÆäÖÐan=-2-4n-
1
2n-1
£¬xnÓÉÒÔÏ·½·¨µÃµ½£ºx1=1£¬µãP2£¨x2£¬2£©ÔÚÅ×ÎïÏßC1£ºy=x2+a1x+b1ÉÏ£¬µãA1£¨x1£¬0£©µ½P2µÄ¾àÀëÊÇA1µ½C1ÉϵãµÄ×î¶Ì¾àÀ룬¡­£¬µãPn+1£¨xn+1£¬2n£©ÔÚÅ×ÎïÏßCn£ºy=x2+anx+bnÉÏ£¬µãAn£¨xn£¬0£©µ½Pn+1µÄ¾àÀëÊÇAnµ½CnÉϵãµÄ×î¶Ì¾àÀ룮
£¨¢ñ£©Çóx2¼°C1µÄ·½³Ì£®
£¨¢ò£©Ö¤Ã÷{xn}ÊǵȲîÊýÁУ®
£¨¢ñ£©ÓÉÌâÒâµÃA1£¨1£¬0£©£¬C1£ºy=x2-7x+b1£¬
ÉèµãP£¨x£¬y£©ÊÇC1ÉÏÈÎÒâÒ»µã£¬
Ôò|A1P|=
(x-1)2+y2
=
(x-1)2+(x2-7x+b1)2

Áîf£¨x£©=£¨x-1£©2+£¨x2-7x+b1£©2
Ôòf'£¨x£©=2£¨x-1£©+2£¨x2-7x+b1£©£¨2x-7£©
ÓÉÌâÒâµÃf'£¨x2£©=0£¬
¼´2£¨x2-1£©+2£¨x22-7x+b1£©£¨2x2-7£©=0
ÓÖP2£¨x2£¬2£©ÔÚC1ÉÏ£¬¡à2=x22-7x2+b1
½âµÃx2=3£¬b1=14
¹ÊC1µÄ·½³ÌΪy=x2-7x+14
£¨¢ò£©ÉèµãP£¨x£¬y£©ÊÇCnÉÏÈÎÒâÒ»µã£¬
Ôò|AnP|=
(x-xn)2+y2
=
(x-xn)2+(x2+anx+bn)2

Áîg£¨x£©=£¨x-xn£©2+£¨x2+anx+bn£©2
Ôòg'£¨x£©=2£¨x-xn£©+2£¨x2+anx+bn£©£¨2x+an£©
ÓÉÌâÒâµÃg'£¨xn+1£©=0
¼´2£¨xn+1-xn£©+2£¨xn+12+anx+bn£©£¨2xn+1+an£©=0
ÓÖ¡ß2n=xn+1£¬¡à£¨xn+1-xn£©+2n£¨2xn+1+an£©=0£¨n¡Ý1£©£¬
¼´£¨1+2n+1£©xn+1-xn+2nan=0??£¨*£©
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷xn=2n-1£¬
¢Ùµ±n=1ʱ£¬x1=1£¬µÈʽ³ÉÁ¢£»
¢Ú¼ÙÉèµ±n=kʱ£¬µÈʽ³ÉÁ¢£¬¼´xk=2k-1£¬
Ôòµ±n=k+1ʱ£¬ÓÉ£¨*£©Öª£¨1+2k+1£©xk+1-xk+2kak=0£¬
ÓÖak=2-4k-
1
2k-1
£¬¡àxk+1=
xk-2kak
1+2k+1
=2k+1£¬
¼´n=k+1ʱ£¬µÈʽ³ÉÁ¢£®
ÓÉ¢Ù¢ÚÖª£¬µÈʽ¶Ôn¡ÊN*³ÉÁ¢£¬
¹Ê{xn}ÊǵȲîÊýÁУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµãAn£¨xn£¬0£©£¬Pn£¨xn£¬2n-1£©ºÍÅ×ÎïÏßCn£ºy=x2+anx+bn£¨n¡ÊN*£©£¬ÆäÖÐan=-2-4n-
12n-1
£¬xnÓÉÒÔÏ·½·¨µÃµ½£ºx1=1£¬µãP2£¨x2£¬2£©ÔÚÅ×ÎïÏßC1£ºy=x2+a1x+b1ÉÏ£¬µãA1£¨x1£¬0£©µ½P2µÄ¾àÀëÊÇA1µ½C1ÉϵãµÄ×î¶Ì¾àÀ룬¡­£¬µãPn+1£¨xn+1£¬2n£©ÔÚÅ×ÎïÏßCn£ºy=x2+anx+bnÉÏ£¬µãAn£¨xn£¬0£©µ½Pn+1µÄ¾àÀëÊÇAnµ½CnÉϵãµÄ×î¶Ì¾àÀ룮
£¨¢ñ£©Çóx2¼°C1µÄ·½³Ì£®
£¨¢ò£©Ö¤Ã÷{xn}ÊǵȲîÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµãÁÐAn£¨xn£¬0£©¡¢Pn£¨xn£¬2n-1£©ºÍÅ×ÎïÏßÁÐCn£ºy=x2+
x
2n
+an
£¨n¡ÊN*£©£¬xnÓÉÒÔÏ·½·¨µÃµ½£ºµãPn+1£¨xn+1£¬2n£©ÔÚÅ×ÎïÏßCn£ºy=x2+
x
2n
+an
ÉÏ£¬µãAn£¨xn£¬0£©µ½Pn+1µÄ¾àÀëÊÇAnµ½CnÉϵãµÄ×î¶Ì¾àÀ룻ÊÔд³öxn+1ºÍxnÖ®¼äµÄµÝÍÆ¹ØÏµÊ½Îªxn+1=
 
£¨ÓÃxn±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬
BC
µÄ´óСÊÇ
AB
´óСµÄk±¶£¬
BC
µÄ·½ÏòÓÉ
AB
µÄ·½ÏòÄæÊ±ÕëÐýת¦È½ÇµÃµ½£¬ÔòÎÒÃdzÆ
AB
¾­¹ýÒ»´Î£¨¦È£¬k£©ÑÓÉìµÃµ½
BC
£® ÒÑÖª
OA1
=(1£¬0)

£¨1£©ÏòÁ¿
OA1
¾­¹ý2´Î(
¦Ð
2
£¬
1
2
)
ÑÓÉ죬·Ö±ðµÃµ½ÏòÁ¿
A1A2
¡¢
A2A3
£¬Çó
A1A2
¡¢
A2A3
µÄ×ø±ê£®
£¨2£©ÏòÁ¿
OA1
¾­¹ýn-1´Î(
¦Ð
2
£¬
1
2
)
ÑÓÉìµÃµ½µÄ×îºóÒ»¸öÏòÁ¿
Ϊ
An-1An
£¬£¨n¡ÊN*£¬n£¾1£©£¬ÉèµãAn£¨xn£¬yn£©£¬ÇóAnµÄ¼«ÏÞλÖÃA(
lim
n¡ú¡Þ
xn£¬
lim
n¡ú¡Þ
yn)

£¨3£©ÏòÁ¿
OA1
¾­¹ý2´Î£¨¦È£¬k£©ÑÓÉìµÃµ½ÏòÁ¿
A1A2
¡¢
A2A3
£¬ÆäÖÐk£¾0£¬¦È¡Ê£¨0£¬¦Ð£©£¬Èô
OA1
¡¢
A1A2
¡¢
A2A3
Ç¡Äܹ»¹¹³ÉÒ»¸öÈý½ÇÐΣ¨¼´A3ÓëOÖØºÏ£©£¬Çó¦È£¬kµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2005ÄêÕã½­Ê¡¸ß¿¼ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÉèµãAn£¨xn£¬0£©£¬Pn£¨xn£¬2n-1£©ºÍÅ×ÎïÏßCn£ºy=x2+anx+bn£¨n¡ÊN*£©£¬ÆäÖÐan=-2-4n-£¬xnÓÉÒÔÏ·½·¨µÃµ½£ºx1=1£¬µãP2£¨x2£¬2£©ÔÚÅ×ÎïÏßC1£ºy=x2+a1x+b1ÉÏ£¬µãA1£¨x1£¬0£©µ½P2µÄ¾àÀëÊÇA1µ½C1ÉϵãµÄ×î¶Ì¾àÀ룬¡­£¬µãPn+1£¨xn+1£¬2n£©ÔÚÅ×ÎïÏßCn£ºy=x2+anx+bnÉÏ£¬µãAn£¨xn£¬0£©µ½Pn+1µÄ¾àÀëÊÇAnµ½CnÉϵãµÄ×î¶Ì¾àÀ룮
£¨¢ñ£©Çóx2¼°C1µÄ·½³Ì£®
£¨¢ò£©Ö¤Ã÷{xn}ÊǵȲîÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸