精英家教网 > 高中数学 > 题目详情
18.点集{(x,y)|(|x|-1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是(  )
A.$\frac{16π}{3}+2\sqrt{3}$B.$\frac{16π}{3}+4\sqrt{3}$C.$\frac{24π}{3}+2\sqrt{3}$D.$\frac{24π}{3}+4\sqrt{3}$

分析 由曲线的方程可得,曲线关于两个坐标轴及原点都是对称的,故画出图象,结合图象求得围成的曲线的面积.

解答 解:点集{(x,y)|(|x|-1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.
由图可得面积S=${S}_{菱形}+\frac{4}{3}{S}_{圆}$=$\frac{1}{2}×2\sqrt{3}×2$+$\frac{4}{3}×π×4$=$\frac{16π}{3}$+2$\sqrt{3}$.
故选:A.

点评 本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图所示,在“推理与证明”的知识结构图中,如果要加入“综合法”,则应该放在(  )
A.“合情推理”的下位B.“直接证明”的下位
C.“演绎推理”的下位D.“间接证明”的下位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等比数列{an}的前项和为Sn=2×(-1)n+a,n∈N*,则实数a的值是(  )
A.-3B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1,F2分别是中心在坐标原点,对称轴为做标轴的双曲线C的左、右焦点,过F2的直线l与双曲线的右支交于A,B两点,I1,I2分别为△AF1F2,△BF1F2的内心,若双曲线C的离心率为2,|I1I2|=$\frac{9}{2}$,直线l的倾斜角的正弦值为$\frac{8}{9}$,则双曲线C的方程为(  )
A.x${\;}^{2}+\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{48}$=1C.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个几何体的三视图如图所示,则该几何体的表面积等于64+6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,首项为b,若存在非零常数a,使得(1-a)Sn=b-an+1对一切n∈N*都成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)问是否存在一组非零常数a,b,使得{Sn}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+$\frac{π}{6}$),其中ω>0,若f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在区间($\frac{π}{6}$,$\frac{π}{3}$)上有最小值、无最大值,则ω等于(  )
A.$\frac{40}{3}$B.$\frac{28}{3}$C.$\frac{16}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知梯形ABCD的各顶点依次在半径为1的圆上,下底AB是直径,$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,其中λ,μ∈R,则λ+μ的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=ax-k-1(a>0,a≠1)过定点(2,0),且f(x)在定义域R上是减函数,则g(x)=loga(x+k)的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案