ÊýÁÐ{an}£¬{bn}(n£½1£¬2£¬3£¬¡­)ÓÉÏÂÁÐÌõ¼þËùÈ·¶¨£º

(¢¡)a1£¼0£¬b1£¾0£»

(¢¢)k¡Ý2ʱ£¬akÓëbkÂú×ãÈçÏÂÌõ¼þ£º

µ±ak£­1£«bk£­1¡Ý0ʱ£¬ak£½ak£­1£¬bk£½£»

µ±ak£­1£«bk£­1£¼0ʱ£¬ak£½£¬bk£½bk£­1£®

ÄÇô£¬µ±a1£½£­5£¬b1£½5ʱ£¬{an}µÄͨÏʽan£½

µ±b1£¾b2£¾¡­£¾bn(n¡Ý2)ʱ£¬ÓÃa1£¬b1±íʾ{bk}µÄͨÏîbk£½________(k£½2£¬3£¬¡­£¬n)£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬ÆäÇ°nÏîºÍΪSn£¬Âú×ãSn=2an-1£¬n¡ÊN*£¬ÊýÁÐ{bn}Âú×ãbn=1-log
12
an£¬n¡ÊN*

£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{anbn}µÄnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É輯ºÏWÓÉÂú×ãÏÂÁÐÁ½¸öÌõ¼þµÄÊýÁÐ{an}¹¹³É£º¢Ù
an+an+2
2
£¼an+1
£»¢Ú´æÔÚʵÊýM£¬Ê¹an¡ÜM£®£¨nΪÕýÕûÊý£©
£¨¢ñ£©ÔÚÖ»ÓÐ5ÏîµÄÓÐÏÞÊýÁÐ{an}¡¢{bn}ÖУ¬ÆäÖÐa1=1£¬a2=2£¬a3=3£¬a4=4£¬a5=5£»b1=1£¬b2=4£¬b3=5£¬b4=4£¬b5=1£»ÊÔÅжÏÊýÁÐ{an}¡¢{bn}ÊÇ·ñΪ¼¯ºÏWÖеÄÔªËØ£»
£¨¢ò£©Éè{cn}ÊǸ÷ÏîΪÕýÊýµÄµÈ±ÈÊýÁУ¬SnÊÇÆäÇ°nÏîºÍ£¬c3=
1
4
£¬S3=
7
4
£¬ÊÔÖ¤Ã÷{Sn}¡ÊW£¬²¢Ð´³öMµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÉèÊýÁÐ{dn}¡ÊW£¬¶ÔÓÚÂú×ãÌõ¼þµÄMµÄ×îСֵM0£¬¶¼ÓÐdn¡ÙM0£¨n¡ÊN*£©£®ÇóÖ¤£ºÊýÁÐ{dn}µ¥µ÷µÝÔö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}¡¢{bn}Âú×ãanbn=1£¬an=n2+n£¬ÔòÊýÁÐ{bn}µÄÇ°10ÏîºÍΪ
10
11
10
11
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}£¬{bn}ÖУ¬¶ÔÈκÎÕýÕûÊýn¶¼ÓУºa1b1+a2b2+a3b3+¡­+an-1bn-1+anbn=(n-1)•2n+1
£¨1£©ÈôÊýÁÐ{bn}ÊÇÊ×ÏîΪ1ºÍ¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{an}ÊÇÊ×ÏîΪa1£¬¹«²îΪdµÈ²îÊýÁУ¨a1•d¡Ù0£©£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÅжÏÊýÁÐ{bn}ÊÇ·ñΪµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÕØÇì¶þÄ££©ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬a1=3£¬Ç°nÏîºÍΪSn£¬{bn}ÊǵȱÈÊýÁУ¬b1=1£¬ÇÒb2S2=64£¬b3S3=960£®
£¨1£©ÇóÊýÁÐ{an}Óë{bn}µÄͨÏʽ£»
£¨2£©ÇóÖ¤£º
1
S1
+
1
S2
+¡­+
1
Sn
£¼
3
4
¶ÔÒ»ÇÐn¡ÊN*
¶¼³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸