【题目】如图,在直三棱柱ABC﹣A1B1C1中,点M、N分别为线段A1B、AC1的中点.
(1)求证:MN∥平面BB1C1C;
(2)若D在边BC上,AD⊥DC1 , 求证:MN⊥AD.
【答案】
(1)证明:如图,连接A1C,在直三棱柱ABC﹣A1B1C1中,侧面AA1C1C为平行四边形,
又∵N分别为线段AC1的中点.
∴AC1与A1C相交于点N,即A1C经过点N,且N为线段A1C的中点,
∵M为线段A1B的中点,
∴MN∥BC,
又∵NN平面BB1C1C,BC平面BB1C1C,
∴MN∥平面BB1C1C
(2)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,
又AD平面ABC1,所以CC1⊥AD,
∵AD⊥DC1,DC1平面BB1C1C,CC1平面BB1C1C,CC1∩DC1=C1,
∴AD⊥平面BB1C1C,
又∵BC平面BB1C1C,
∴AD⊥BC,
又由(1)知,MN∥BC,
∴MN⊥AD
【解析】(1)由题意,利用三角形中位线定理可证MN∥BC,即可判定MN∥平面BB1C1C.(2)利用线面垂直的性质可证CC1⊥AD,结合已知可证AD⊥平面BB1C1C,从而证明AD⊥BC,结合(1)知,MN∥BC,即可证明MN⊥AD.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对直线与平面垂直的性质的理解,了解垂直于同一个平面的两条直线平行.
科目:高中数学 来源: 题型:
【题目】已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C= cosC,其中C为锐角.
(1)求角C的大小;
(2)a=1,b=4,求边c的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区上年度电价为0.8元/kWh,年用电量为akWh,本年度计划将电价降到0.55 元/kWh至0.75元/kWh之间,而用户期待电价为0.4元/kWh,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3元/kWh.(注:收益=实际用电量×(实际电价﹣成本价)),示例:若实际电价为0.6元/kWh,则下调电价后新增加的用电量为 元/kWh)
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系;
(2)设K=0.2a,当电价最低为多少仍可保证电力部门的收益比上一年至少增长20%?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:x∈R,ax2+ax﹣1<0,命题q: +1<0.
(1)若“p或q”为假命题,求实数a的取值范围;
(2)若“非q”是“α∈[m,m+1]”的必要不充分条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形中, , , ,四边形为矩形, ,平面平面.
(Ⅰ)求证: 平面;
(Ⅱ)求平面与平面所成锐二面角的余弦值;
(Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,线段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,则CD的长为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)和g(x)的图象与y轴的交点重合.
(1)求a实数的值
(2)若h(x)=f(x)+b (b为常数)试讨论函数h(x)的奇偶性;
(3)若关于x的不等式f(x)﹣2 >a有解,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com