精英家教网 > 高中数学 > 题目详情
已知sinθ+cosθ=
1
3
,则sin2θ的值为
-
8
9
-
8
9
分析:将已知的等式左右两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,整理后即可求出sin2θ的值.
解答:解:将sinθ+cosθ=
1
3
左右两边平方得:
(sinθ+cosθ)2=
1
9

整理得:sin2θ+2sinθcosθ+cos2θ=1+sin2θ=
1
9

则sin2θ=
1
9
-1=-
8
9

故答案为:-
8
9
点评:此题考查了二倍角的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
7
13
(0<α<π),则tanα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=
2
,求sin2α的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
2
2
(0<θ<π),则cos2θ的值为
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步练习册答案