精英家教网 > 高中数学 > 题目详情
5.在空间直角坐标系Oxyz中,设点M是点N(2,-1,4)关于坐标平面xOy的对称点,点P(1,3,2)关于x轴的对称点为Q,则线段MQ的长度等于(  )
A.3B.$\sqrt{21}$C.$\sqrt{53}$D.$\sqrt{61}$

分析 先根据点的对称求得M的坐标Q坐标,进而利用两点的间的距离公式求得|MQ|.

解答 解:∵M是N关于坐标平面xoy的对称点
∴M点坐标为(2,-1,-4)
点P(1,3,2)关于x轴对称点Q(1,-3,-2)
∴|MQ|=$\sqrt{(2-1)^{2}+(-1+3)^{2}+(-4+2)^{2}}$=3.
故选:A.

点评 本题主要考查了空间直角坐标系中的点的对称,两点间的距离公式.考查了学生对基础知识的把握.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知$\vec a$,$\vec b$不共线向量,若向量$\overrightarrow{AB}$=2$\vec a$+k$\vec b$,$\overrightarrow{CB}$=$\vec a$+$\vec b$,$\overrightarrow{CD}$=2$\vec a$-$\vec b$,若A,B,D三点共线,则实数k的值等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{2x+5}{x+2}$,定义在R上的函数g(x)周期为2,且满足g(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1)}\\{2-{x}^{2},x∈[-1,0)}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,1]上的所有零点之和为(  )
A.-4B.-6C.-7D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={2^x}-\frac{1}{{{2^{|x|}}}}$.若f(x)=2,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2cos(2x+\frac{π}{3})-2cosx+1$.
(1)试将函数f(x)化为f(x)=Asin(ωx+φ)+B(ω>0)的形式,并求该函数的对称中心;
(2)若锐角△ABC中角A、B、C所对的边分别为a、b、c,且f(A)=0,求$\frac{b}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于x的不等式组$\left\{\begin{array}{l}{1≤k{x}^{2}+2}\\{x+k≤2}\end{array}\right.$有唯一实数解,则实数k的取值集合{$1+\sqrt{2}$,$\frac{1-\sqrt{5}}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.化简$\frac{sin(\frac{π}{2}-α)cos(π+α)}{sin(\frac{3π}{2}+α)}$=cosa.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆A:x2+(y+1)2=1,圆B:(x-4)2+(y-3)2=1.
(1)过A的直线L截圆B所得的弦长为$\frac{6}{5}$,求该直线L的斜率;
(2)动圆P同时平分圆A与圆B的周长;
①求动圆圆心P的轨迹方程;
②问动圆P是否过定点,若经过,则求定点坐标;若不经过,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面内,复数z=i(2-3i)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案