精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线x2=2py和 ﹣y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0, ),若 |PQ|= |PF|,则抛物线的方程是(
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y

【答案】B
【解析】解:如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF
|PQ|= |PF|,在Rt△PQE中,sin ,∴
即直线PQ的斜率为 ,故设PQ的方程为:y= x+m (m<0)
消去y得
则△1=8m2﹣24=0,解得m=﹣ ,即PQ:y=
,△2=8p2﹣8 p=0,得p=
则抛物线的方程是x2=2 y.故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行一次如图所示的程序框图,若输出i的值为0,则下列关于框图中函数f(x)(x∈R)的表述,正确的是(
A.f(x)是奇函数,且为减函数
B.f(x)是偶函数,且为增函数
C.f(x)不是奇函数,也不为减函数
D.f(x)不是偶函数,也不为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,其中为自然对数的底数.

(1)求实数的值;

(2)若存在,使得不等式成立,求实数的取值范围;

(3)若函数上不存在最值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|x+a|.
(Ⅰ)当a=2时,解不等式f(x)>6;
(Ⅱ)若关于x的不等式f(x)<a2﹣1有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱锥的地面是矩形, 平面,,.

(1)求证: 平面;

(2)求二面角的大小;

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若1

A. logab>logba B. |logab+logba|>2

C. (logba)2<1 D. |logab|+|logba|>|logab+logba|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三角形ABC中,AB<AC,∠BAC=90°,边AB,AC的长分别为方程 的两个实数根,若斜边BC上有异于端点的E,F两点,且EF=1,∠EAF=θ,则tanθ的取值范围为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)求函数上的最值.

查看答案和解析>>

同步练习册答案