精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

求函数的单调递减区间;

求函数在区间上的最大值及最小值.

【答案】.(时,取得最小值

时,取得最大值1.

【解析】

试题分析:先根据两角和余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求单调区间:由解得,最后写出区间形式先根据自变量范围确定基本三角函数定义区间:,再根据正弦函数在此区间图像确定最值:当时,取得最小值

时,取得最大值1.

试题解析:

. ……………………………………3分

,得.

的单调递减区间为.……………………6分

………………………………8分

所以. …………………………………………10分

所以当时,取得最小值

时,取得最大值1. ………………………………13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足: ,其中.

(1)求数列的通项公式;

(2)记数列的前项和为,问是否存在正整数,使得成立?若存在,求的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(元)

90

84

83

80

75

68

(1)求回归直线方程

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆两点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项都是正数的数列的前项和为

1求数列的通项公式;

2设数列满足:,数列的前项和,求证:

3对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若直角三角形两直角边长之和为12,求其周长的最小值;

(2)若三角形有一个内角为,周长为定值,求面积的最大值;

(3)为了研究边长满足的三角形其面积是否存在最大值,现有解法如下:(其中, 三角形面积的海伦公式),

,则

但是,其中等号成立的条件是,于是矛盾,

所以,此三角形的面积不存在最大值.

以上解答是否正确?若不正确,请你给出正确的答案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有个人.把这个人按照年龄分成5组:第1组,第2组,第3组,第4组,第5组,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.

(1)求的值,并根据频率分布直方图估计这组数据的众数;

(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;

(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业实行裁员增效,已知现有员工人,每人每年可创纯收益(已扣工资等)1万元,据评估,在生产条件不变的情况下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给下岗工人每位0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的,设该企业裁员人后,年纯收益为万元.

(1)写出关于的函数关系式,并指出的取值范围;

(2)当时,该企业应裁员多少人,才能获得最大的经济效益(注:在保证能取得最大的经济效益的情况下,能少裁员,应尽量少裁员)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一直线与抛物线两点,点抛物线上到直线距离最小的点,直线直线于点.

坐标;

)求证直线行于抛物线的对称轴.

查看答案和解析>>

同步练习册答案