精英家教网 > 高中数学 > 题目详情
求函数f(x)=
x-5
-
24-3x
的值域.
考点:函数的值域
专题:计算题
分析:先求出函数的定义域,然后结合函数在定义域上的单调性即可求解函数的值域
解答: 解:由题意可得,
x-5≥0
24-3x≥0

解可得,5≤x≤8
∵函数f(x)=
x-5
-
24-3x
在[5,8]上单调递增
故当x=5时,函数取得最小值f(5)=-3
当x=8时,函数取得最大值f(8)=
3

∴函数f(x)=
x-5
-
24-3x
的值域为[-3,
3
]
点评:本题主要考查了函数值域的求解,解题的关键是寻求函数的单调性,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,x,y满足约束条件
x≥1
x+y≤3
y≥a(x-3)
,若z=2x+y的最小值为1,则a=(  )
A、
1
2
B、
1
3
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.
课     程[来初等代数平面几何初等数论微积分初步
合格的概率
2
3
3
4
2
3
1
2
(Ⅰ)求乙同学取得参加数学竞赛复赛的资格的概率;
(Ⅱ)记ξ表示三位同学中取得参加数学竞赛复赛的资格的人数,求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
1
a
2
a
3
,…
a
n
满足如下条件:
a
n
-
a
n-1
=
d
(n=2,3,4,…),
d
a1
的夹角为
3
,且|
a
1
|=4|
d
|=2
,则数列|
a
1
|,|
a
2
|,|
a
3
|,…|
a
n
|…
中最小的项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)已知(a+a-12=3,求a3+a-3
(2)已知a2x=
2
+1
,求
a3x+a-3x
ax+a-x

(3)已知x-3+1=a,求a2-2ax-3+x-6

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=cos2x+1的图象向右平移
π
4
个单位,再向下平移一个单位后得到y=f(x)的图象,则函数f(x)=(  )
A、cos(2x+
π
4
B、cos(2x-
π
4
C、sin2x
D、-sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a2+bc.
(1)求A的大小;
(2)如果sinB=
3
3
,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x2-3)=lg
x2
x2-6

(1)求f(x)的定义域;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,求证:a2+b2≥2(2a-b)-5.

查看答案和解析>>

同步练习册答案