精英家教网 > 高中数学 > 题目详情

已知椭圆C:,直线

(I)以原点O为极点,x轴正半轴为极轴建立极坐标系,求椭圆C与直线的极坐标方程;

(II)已知P是上一动点,射线OP交椭圆C于点R,又点Q在OP上且满足.当点P在上移动时,求点Q在直角坐标系下的轨迹方程.


(1)C:;(2)

【命题立意】本题旨在考查极坐标与直角坐标方程的相互转化与应用.

【解析】(I)C:

(II)设,则


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知过原点的动直线与圆相交于不同的两点.

(1)求圆的圆心坐标;

(2)求线段的中点的轨迹的方程;

(3)是否存在实数,使得直线与曲线只有一个交点:若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


是一个“—伴随函数”;④“ —伴随函数”至少有一个零点. 其中不正确的序号是_________(填上所有不正确的结论序号).


查看答案和解析>>

科目:高中数学 来源: 题型:


在极坐标系中,设圆C:r=4 cosq 与直线l:q= (r∈R)交于A,B两点,求以AB为直径的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


在平面直角坐标系xOy中,已知直线的参数方程为: (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.直线与圆相交于AB两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,AB,AC是⊙O的切线,ADE是⊙O的割线,求证:BE· CD=BD· CE.

 


查看答案和解析>>

科目:高中数学 来源: 题型:


如图,梯形中,,若以为直径的⊙相切于点,则等于(    )

(A)                 (B)

(C)4                   (D)8

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所示,△内接于⊙是⊙的切线,,则_____,     

查看答案和解析>>

科目:高中数学 来源: 题型:


(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,求2α-β的值.


查看答案和解析>>

同步练习册答案