精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,椭圆ab>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AFBN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.
(1)椭圆C方程为.(2)同解析


解法一:
(Ⅰ)由题设a=2,c=1,从而b2=a2-c2=3,
所以椭圆C方程为.
(Ⅱ)(i)由题意得F(1,0),N(4,0).
A(m,n),则B(m,-n)(n0),="1." ……①
AFBN的方程分别为:n(x-1)-(m-1)y=0,
n(x-4)-(m-4)y=0.
M(x0,y0),则有 n(x0-1)-(m-1)y0="0," ……②
n(x0-4)+(m-4)y0="0," ……③
由②,③得
x0=.
所以点M恒在椭圆G上.

(ⅱ)设AM的方程为x=xy+1,代入=1得(3t2+4)y2+6ty-9=0.
A(x1,y1),Mx2y2),则有:y1+y2=
|y1-y2|=
令3t2+4=λ(λ≥4),则
|y1-y2|=
因为λ≥4,0<
|y1-y2|有最大值3,此时AM过点F.
AMN的面积SAMN=
解法二:
(Ⅰ)问解法一:
(Ⅱ)(ⅰ)由题意得F(1,0),N(4,0).
A(m,n),则B(m,-n)(n≠0),              ……①
AFBN的方程分别为:n(x-1)-(m-1)y="0,                 " ……②
n(x-4)-(m-4)y="0,                 " ……③
由②,③得:当.         ……④
由④代入①,得=1(y≠0).
当x=时,由②,③得:
解得与a≠0矛盾.
所以点M的轨迹方程为即点M恒在锥圆C上.
(Ⅱ)同解法一.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本大题满分14分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,
(Ⅰ)写出双曲线C的离心率的关系式;
(Ⅱ)当时,经过焦点F且品行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点是曲线上的点,又点,下列结
论正确的是                                              (   )
A..B..
C..D..

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆与抛物线有公共点,则实数a的取值范围是_____________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知定点和直线,过定点F与直线相切的动圆圆心为点C。(1)求动点C的轨迹方程;  (2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线没有公共点,则过点的一条直线与椭圆的公共点的个数是                                               (   )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆与双曲线的焦点相同,则        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,过F2垂直于x轴的直线交椭圆于一点P,那么|PF1|的值是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线与曲线
为参数,)有两个公共点AB,且|AB|=2,则实数a的值为          ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为            .

查看答案和解析>>

同步练习册答案