精英家教网 > 高中数学 > 题目详情
若直线与曲线
为参数,)有两个公共点AB,且|AB|=2,则实数a的值为          ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为            .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,椭圆ab>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AFBN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知抛物线的焦点轴上,抛物线上一点到准线的距离是,过点的直线与抛物线交于两点,过两点分别作抛物线的切线,这两条切线的交点为
(Ⅰ)求抛物线的标准方程;
(Ⅱ)求的值;
(Ⅲ)求证:的等比中项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是双曲线的两个焦点,P为该曲线上一点,若为等腰直角三角形,则该双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点,B、C在轴上,且
(1)求外心的轨迹的方程;
(2)若P、Q为轨迹S上两点,求实数范围,使,且

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点,且与直线相切.
(1)求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,且满足
?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两定点,动点满足
(1)  求动点的轨迹方程;
(2)  设点的轨迹为曲线,试求出双曲线的渐近线与曲线的交点坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,动点满足.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作直线与曲线交于两点,若,求直线的方程;
(Ⅲ)设为曲线在第一象限内的一点,曲线处的切线与轴分别交于点,求面积的最小值.

查看答案和解析>>

同步练习册答案