精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知点,B、C在轴上,且
(1)求外心的轨迹的方程;
(2)若P、Q为轨迹S上两点,求实数范围,使,且
(1) (2)
(1)设外心为,且,B,C
由G点在BC的垂直平分线上知
由|GA|2=|GB|2,得

即点G的轨迹S为:                             ……4分
(2)设点P,Q

                              ……6分
因为点A在抛物线内,所以
,不妨取
则|PQ|==
==2    ……10分
由|PQ|,或
的取值范围是                         ……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为米.市场上,圆柱侧面用料单价为每平方米元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为(弧度),总费用为(元).
(1)写出的取值范围;(2)将表示成的函数关系式;
(3)当为何值时,总费用最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,A、B分别是椭圆的公共左右顶点,P、Q分别位于椭圆和双曲线上且不同于A、B的两点,设直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4且k1+k2­+k3+k4=0。
(1)求证:O、P、Q三点共线;(O为坐标原点)
(2)设F1、F2分别是椭圆和双曲线的右焦点,已知PF1//QF2,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线-=1的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r=     (   )
A.B.2 C.3D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点是曲线上的点,又点,下列结
论正确的是                                              (   )
A..B..
C..D..

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆与抛物线的准线相切,则   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点到定点的距离与点到定直线的距离之比为
(1)求动点的轨迹的方程;
(2)设是直线上的两个点,点与点关于原点对称,若,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线与曲线
为参数,)有两个公共点AB,且|AB|=2,则实数a的值为          ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为            .

查看答案和解析>>

同步练习册答案