精英家教网 > 高中数学 > 题目详情
(本大题满分14分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,
(Ⅰ)写出双曲线C的离心率的关系式;
(Ⅱ)当时,经过焦点F且品行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。
(Ⅰ)。(Ⅱ)
解:(Ⅰ)∵四边形,∴,作双曲线的右准线交PM于H,则,又
所以
(Ⅱ)当时,,双曲线为
四边形是菱形,所以直线OP的斜率为,则直线AB的方程为,代入到双曲线方程得:
,由得:
解得,则,所以为所求。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,椭圆ab>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AFBN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,则抛物线上到直线距离最小的点的坐标为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
在平面直角坐标系中,已知点,点在直线上运动,过点垂直的直线和的中垂线相交于点
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设点是轨迹上的动点,点轴上,圆为参数)内切于,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是双曲线的两个焦点,P为该曲线上一点,若为等腰直角三角形,则该双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分,第(1)小题4分,第(2)小题8分,第(3)小题4分)
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于。证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在以原点为圆心的单位圆上运动,则点的轨迹是(      )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点作直线交抛物线于A、B两点,若线段AB中的横坐标为3,则|AB|等于  (   )
A.2                        B.4                       C.8                        D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线yx+1与椭圆mn>0)相交于AB两点,若弦AB的中点的横坐标等于,则双曲线的两条渐近线的夹角的正切值等于_______.

查看答案和解析>>

同步练习册答案