精英家教网 > 高中数学 > 题目详情
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
分析:(1)函数y=f(x)=出租自行车的总收入-管理费;当x≤6时,全部租出;当6<x≤20时,每提高1元,租不出去的就增加3辆;所以要分段求出解析式;
(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
解答:解:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3.
∵x∈N,∴x≥3,∴3≤x≤6,且x∈N.
当6<x≤20时,y=[50-3(x-6)]x-115=-3x2+68x-115
综上可知y=
50x-115,,(3≤x≤6,x∈N)
-3x2+68x-115,,(6<x≤20,x∈N).

(2)当3≤x≤6,且x∈N时,∵y=50x-115是增函数,
∴当x=6时,ymax=185元.
当6<x≤20,x∈N时,y=-3x2+68x-115=-3(x-
34
3
)2+
811
3

∴当x=11时,ymax=270元.
综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.
点评:本题用分段函数模型考查了一次函数,二次函数的性质与应用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.
为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元,根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费用后的所得).

查看答案和解析>>

科目:高中数学 来源: 题型:

为方便游客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.设每辆自行车的日租金x(元)(3≤x≤20,x∈N*),用y(元)表示出租自行车的日净收入(即一日出租自行车的总收入减去管理费用后的所得)
(1)求函数y=f(x)的解析式;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北百所重点联考理)(12分)某旅游点有50辆自行车供游客租赁使用,管理这些自德车的费用是每日115元。

根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。

为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。

   (1)求函数的解析式及其定义域;

   (2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?

查看答案和解析>>

同步练习册答案