精英家教网 > 高中数学 > 题目详情
下表是一位母亲给儿子作的成长记录:
年龄/周岁3456789
身高/cm94.8104.2108.7117.8124.3130.8139.1
根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为
?
y
=7.19x+73.93,给出下列结论:
①y与x具有正的线性相关关系;
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是145.83cm;
④儿子年龄增加1周岁,身高约增加7.19cm.
其中,正确结论的个数是(  )
A、1B、2C、3D、4
考点:命题的真假判断与应用
专题:概率与统计
分析:本题考察统计中的线性回归分析,在根据题目给出的回归方程条件下做出分析,然后逐条判断正误.
解答: 解;线性回归方程为
?
y
=7.19x+73.93,
①7.19>0,即y随x的增大而增大,y与x具有正的线性相关关系,①正确;
②回归直线过样本的中心点为(6,117.1),②错误;
③当x=10时,
y
=145.83,此为估计值,所以儿子10岁时的身高的估计值是145.83cm而不一定是实际值,③错误;
④回归方程的斜率为7.19,则儿子年龄增加1周岁,身高约增加7.19cm,④正确,
故应选:B
点评:本题考察回归分析的基本概念,属于基础题,容易忽略估计值和实际值的区别.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,A,B,C的对边分别是a,b,c,已知
3
2
sin2A=sinCcosB+sinBcosC.
(1)求sinA的值;
(2)若a=1,cosB+cosC=
2
3
3
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:2x-y+1=0,直线l2过点(1,1)倾斜角为直线l1的倾斜角的两倍,则直线l2的方程为(  )
A、4x+3y-7=0
B、4x+3y+1=0
C、4x-y-3=0
D、4x-y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(x-1)•|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)若函数f(x)在[2,3]上的最小值为6,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn,满足an+12=4Sn+4n-3,且a2,a5,a14恰好是等比数列{bn}的前三项.
(1)求数列{an}、{bn}的通项公式;
(2)记数列{bn}的前n项和为Tn,若对任意的n∈N*,(Tn+
3
2
)k≥3n-6恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(2)若F(x)=
f(x)x>0
-f(x)x<0
当mn<0,m+n>0,a>0,且函数f(x)为偶函数时,试判断F(m)+F(n)能否大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:
参加次数0123
人数0.10.20.40.3
根据上表信息解答以下问题:
(Ⅰ)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数f(x)=x2-ηx-1在区间(4,6)内有零点”的事件为A,求A发生的概率P;
(Ⅱ)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=4-an-
1
2n-2
,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的中心是原点O,它的短轴长为2
2
,椭圆与双曲线
x2
3
-y2=1有共同的焦点.
(1)求椭圆的方程;
(2)过点A(3,0)的直线与椭圆相交于不同的P、Q两点,求该直线斜率k的取值范围.

查看答案和解析>>

同步练习册答案