精英家教网 > 高中数学 > 题目详情
1.已知复数z=$\frac{1-i}{i}$,则|z|等于(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 直接由复数代数形式的乘除运算化简复数z,再由复数求模公式计算即可得答案.

解答 解:z=$\frac{1-i}{i}$=$\frac{-i(1-i)}{-{i}^{2}}=-1-i$,
则|z|=$\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2}$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.下列命题:
①没有公共点的两条直线是异面直线;  
②分别和两条异面直线都相交的两直线异面;
③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行;
④三条平行线最多可确定三个平面.
其中正确答案的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若两个正实数x,y满足$\frac{1}{x}$+$\frac{4}{y}$=1,且不等式x+$\frac{y}{4}$<m2-3m有解,则实数m的取值范围是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l经过直线3x+4y-2=0与直线2x+y+2=0的交点P,且垂直于直线x+2y-1=0.
(1)求直线l的方程;
(2)若一束光线自点A(2,1)射向直线l,反射光线恰好过原点,求反射光线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.作出函数y=sin(x-$\frac{π}{6}$)+1在[$\frac{π}{6}$,$\frac{13}{6}$π]的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线C:y2=4x,若等边三角形PQF中,P在C上,Q在C的准线上,F为C的焦点,则|PF|等于(  )
A.8B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司采用众筹的方式募集资金,开发一种创新科技产品,为了解募集的资金x(单位:万元)与收益率y之间的关系,对近6个季度众筹到的资金xi和收益率yi的数据进行统计,得到数据表:
x2.002.202.603.203.404.00
y0.220.200.300.480.560.60
(Ⅰ)通过绘制并观察散点图的分布特征后,分别选用y=a+bx与y=c+dlgx作为众筹到的资金x与收益率y的拟合方式,再经过计算,得到这两种拟合方式的回归方程y=0.34+0.02x,y=-0.27+1.47lgx和如表的统计数值,试运用相关指数比较以上两回归方程的拟合效果:
$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ y=a+bx y=c+dlgx
 $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$
 0.150.13 0.01
(Ⅱ)根据以上拟合效果较好的回归方程,解答:
(i)预测众筹资金为5万元时的收益率.(精确到0.0001)
(ii)若众筹资金服从正态分布N(μ,σ2),试求收益率在75.75%以上的概率.
附:(1)相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
(2)若随机变量X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974;
(3)参考数据:lg2=0.3010,lg3=0.4771.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求值:sin(-90°)+3cos0°-2tan135°-4cos300°.
(2)已知tanθ=$\frac{4}{3}$,其中θ∈(0,$\frac{π}{2}$).求sinθ-cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin($\frac{π}{6}$-x)sinx的最大值是(  )
A.$\frac{1}{2}$B.1C.$\frac{1}{2}$-$\frac{\sqrt{3}}{4}$D.$\frac{1}{2}$+$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案