如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA1平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD‘
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为求二面角E-AF-C的余弦值
科目:高中数学 来源: 题型:解答题
(12分)一个圆锥,它的底面直径和高均为.
(1)求这个圆锥的表面积和体积.
(2)在该圆锥内作一内接圆柱,当圆柱的底面半径和高分别为多少时,它的侧面积最大?最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分).如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC的中点,且DE∥BC.
(1)求证:DE∥平面ACD
(2)求证:BC⊥平面PAC;
(3)求AD与平面PAC所成的角的正弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知
(I))求证:⊥平面;
(II)求二面角的余弦值.
(Ⅲ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)(如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积
(2)如图,在四边形中,,,,,,求四边形绕旋转一周所成几何体的表面积及体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图所示,在正三棱柱ABC -A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点。
(I)求证:A1B1//平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在梯形中,∥,,,平面平面,四边形是矩形,,点在线段上.
(1)求证:平面BCF⊥平面ACFE;
(2)当为何值时,∥平面?证明你的结论;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BF,E丄平面ABCD,G为EF中点.
(1)求证:CF//平面
(2) 求证:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com