用分别表示中的最大与最小者,有下列结论:
①;
②;
③若,则;
④若,则。
其中正确结论的个数是( )
A.0 | B.1 | C.2 | D.3 |
科目:高中数学 来源: 题型:单选题
对命题“正三角形的内切圆切于三边的中点”可类比猜想出:正四面体的内切球切于四面都为正三角形的什么位置?( )
A.正三角形的顶点 | B.正三角形的中心 |
C.正三角形各边的中点 | D.无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
已知点是函数的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论成立.运用类比思想方法可知,若点是函数的图象上任意不同两点,则类似地有_________________成立.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂
巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,
以表示第幅图的蜂巢总数,则=_______。
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥,如果用表示三个侧面面积,表示截面面积,那么类比得到的结论是 .
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
若三角形内切圆的半径为r,三边长为,则三角形的面积,根据类比思想,若四面体内切球半径为R,四个面的面积为S1、S2、S3、S4,则四面体的体积V= .
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有≤f(),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com