【题目】已知函数
(
为自然对数的底数).
(1)若对于任意实数
,
恒成立,试确定
的取值范围;
(2)当
时,函数
在
上是否存在极值?若存在,请求出这个极值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围
,
,
,
分组,得到的频率分布直方图如图:
![]()
(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);
(2)若对得分在前
的学生进行校内奖励,估计获奖分数线;
(3)若这60名学生中男女生比例为
,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面
列联表,是否有
的把握认为“成绩良好”与“性别”有关?
成绩良好 | 成绩一般 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:
,![]()
临界值表:
| 0.10 | 0.05 | 0.010 |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆
的圆心为
,直线l过点
且与x轴不重合,l交圆
于
两点,过点
作
的平行线交
于点
.
(1)证明
为定值,并写出点
的轨迹方程;
(2)设点
的轨迹为曲线
,直线
与曲线
交于
两点,点
为椭圆
上一点,若
是以
为底边的等腰三角形,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)求
的单调区间;
(Ⅱ)求
在区间
上的最小值.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)
.
令
,得
.
![]()
与
的情况如上:
所以,
的单调递减区间是
,单调递增区间是
.
(Ⅱ)当
,即
时,函数
在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,
由(Ⅰ)知
在
上单调递减,在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,函数
在
上单调递减,
所以
在区间
上的最小值为
.
综上,当
时,
的最小值为
;
当
时,
的最小值为
;
当
时,
的最小值为
.
【题型】解答题
【结束】
19
【题目】已知抛物线
的顶点在原点,焦点在坐标轴上,点
为抛物线
上一点.
(1)求
的方程;
(2)若点
在
上,过
作
的两弦
与
,若
,求证: 直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种类型的题目有
,
,
,
,
5个选项,其中有3个正确选项,满分5分.赋分标准为“选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分”在某校的一次考试中出现了一道这种类型的题目,已知此题的正确答案为
,假定考生作答的答案中的选项个数不超过3个.
(1)若甲同学无法判断所有选项,他决定在这5个选项中任选3个作为答案,求甲同学获得0分的概率;
(2)若乙同学只能判断选项
是正确的,现在他有两种选择:一种是将AD作为答案,另一种是在
这3个选项中任选一个与
组成一个含有3个选项的答案,则乙同学的最佳选择是哪一种,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
![]()
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1的圆心在坐标原点O,且恰好与直线
相切.
(Ⅰ)求圆C1的标准方程;
(Ⅱ)设点A为圆上一动点,AN垂直于x轴于点N,若动点Q满足![]()
(其中m为非零常数),试求动点Q的轨迹方程;
(Ⅲ)在(Ⅱ)的结论下,当m=
时,得到动点Q的轨迹为曲线C,与l1垂直的直线l与曲线C交于B,D两点,求△OBD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com