精英家教网 > 高中数学 > 题目详情

【题目】某镇计划建造一个室内面积为800m2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?

【答案】当矩形温室的左侧边长为 ,后侧边长为 时,蔬菜的种植面积最大,最大种植面积为

【解析】试题分析:设出矩形的长为与宽,建立蔬菜面积关于矩形边长的函数关系式,再利用基本不等式即可求解最值.

试题解析:设矩形温室的左侧边长为a m,后侧边长为b m,蔬菜的种植面积为S m2,则ab=800

所以S=a4)(b2=ab4b2a+8=8082a+2b≤8084=648

当且仅当a=2b,即a=40b=20时等号成立,则S最大值=648

答:当矩形温室的左侧边长为40m,后侧边长为20m时,蔬菜的种植面积最大,最大种植面积为648m2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某化工厂引进一条先进生产线生产某种化工产品, 生产的总成本万元与年产之间的函数关系式可以近似地表示为,已知此生产线年产最大为.

(1)求年产为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

(2)若毎吨产品平均出厂价为万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(重点班)我们知道对数函数,对任意,都有成立,若,则当时,.参照对数函数的性质,研究下题:定义在上的函数对任意,都有,并且当且仅当时,成立.

1)设,求证:

2)设,若,比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)判断上的单调性;

(2)判断函数上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1,求函数的表达式;

21的条件下,设函数,若上是单调函数,求实数的取值范围;

3是否存在使得函数上的最大值是4?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调区间;

2时,若对任意恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,底面为直角梯形,底面

的中点,为棱的中点.

(Ⅰ)证明:平面

(Ⅱ)已知,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=lgx的图象为C,作图象C关于直线y=x的对称图象C1 , 将图象C1向左平移3个单位后再向下平移两个单位得到图象C2 , 若图象C2所对应的函数为f(x),则f(﹣3)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“x>3”是“x>1”的条件.

查看答案和解析>>

同步练习册答案