| A. | 3 | B. | -3 | C. | 4 | D. | $\sqrt{5}$ |
分析 将椭圆方程转化成标准方程,利用椭圆的参数方程,根据正弦函数的性质即可求得x+y的最大值.
解答 解:由椭圆4x2+y2=4,得${x}^{2}+\frac{{y}^{2}}{4}=1$,
可设椭圆参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$,
∴x+y=2sinθ+cosθ=$\sqrt{5}$sin(θ+φ),(tanφ=$\frac{1}{2}$).
由正弦函数的性质可知:x+y的最大值为$\sqrt{5}$,
故选:D.
点评 本题考查椭圆的简单几何性质,考查了椭圆参数方程的应用,考查三角函数的最值的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x<1或x>3 | B. | 1<x<3 | C. | 1<x<2 | D. | x<2或x>3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com