精英家教网 > 高中数学 > 题目详情
已知数列
n-1  n为奇数
n     n为偶数
,则a1+a100=______,a1+a2+a3+a4+…+a99+a100=______.
由数列的通项公式an=
n-1,n为奇数
n,n为偶数

可得数列的前100项中奇数项分别为:0,2,4,…98;偶数项分别为:2,4,6,…100
∴a1+a100=0+100=100
∵a1+a2+a3+a4+…+a99+a100=(a1+a3+…a99)+(a2+a4+…+a100
=(0+2+4+…+98)+(2+4+…+100)
=
0+98
2
×50+
2+100
2
×50
=5000
故答案为:100,5000
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-4
x
+4(x≥4)
的反函数为f-1(x),数列{an}满足:a1=1,an+1=f-1(an)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn
4an
3n
成等比数列,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列bn满足bn=
1anan+1
,Tn为数列bn的前n项和.
(1)求a1、d和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(1,
1
3
)是函数f(x)ax (a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足sn-sn-1=
sn
+
sn-1
(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}的通项cn=bn•(
1
3
)n
,求数列{cn}的n项和Rn
(3)若数列{
1
bnbn+1
}前n项和为Tn,问Tn
1000
2013
的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
n-1  n为奇数
n     n为偶数
,则a1+a100=
100
100
,a1+a2+a3+a4+…+a99+a100=
5000
5000

查看答案和解析>>

同步练习册答案