精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E:的焦距为2,一条准线方程为x=,A,B分别为椭圆的右顶点和上顶点,点P,Q在的椭圆上,且点P在第一象限.

(1)求椭圆E的标准方程;

(2)若点P,Q关于坐标原点对称,且PQ⊥AB,求四边形ABCD的面积;

(3)若AP,BQ的斜率互为相反数,求证:PQ斜率为定值.

【答案】(1)(2)(3)见证明

【解析】

(1)由焦距得c,再由准线方程结合a2=b2+c2可得椭圆方程;(2)由题意可得kPQ=2,即直线PQ方程为y=2x,与椭圆方程联立解得|PQ|可得四边形ABCD的面积;(3)设直线AP的斜率为k(k<0),则直线AP方程y=k(x-2),与椭圆方程联立得P点坐标,利用直线AN斜率与AM斜率互为相反数,将k换为-k,可求N的坐标再利用斜率计算公式即可得出PQ斜率为定值.

(1)由题意可得:

解得:.

椭圆的标准方程为:.

(2)

关于坐标原点对称,且

.可得直线的方程为:.

联立,解得.

.

四边形的面积.

(3)证明:设.

设直线的斜率为,则直线方程为:

联立,化为:

,解得.

的斜率互为相反数, 直线的斜率为 ,直线方程为:.

联立,化为:

.

斜率为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1

(1)求证:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为的菱形, .

(1)求证:平面平面

(2)若,求锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣9x,函数g(x)=3x2+a.
(1)已知直线l是曲线y=f(x)在点(0,f(0))处的切线,且l与曲线y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三个不同实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2+ax+a).
(1)求f(x)的单调区间;
(2)求证:当a≥4时,函数f(x)存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在(﹣∞,+∞)上是具有单调性,则实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切于点,且被轴所截得的弦长为,圆心在第一象限.

(Ⅰ)求圆的方程;

(Ⅱ)若点是直线上的动点,过作圆的切线,切点为,当△的面积最小时,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的极值;

(Ⅱ)讨论的单调性;

(Ⅲ)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学竞赛中,30名参赛学生的成绩(百分制)的茎叶图如图所示:若将参赛学生按成绩由高到低编为1﹣30号,再用系统抽样法从中抽取6人,则其中抽取的成绩在[77,90]内的学生人数为(

A.2
B.3
C.4
D.5

查看答案和解析>>

同步练习册答案