精英家教网 > 高中数学 > 题目详情
函数f (x) 对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f (1)=0.
(Ⅰ)求f (0)的值;
(Ⅱ)求函数f(x)的表达式;
(Ⅲ)当x∈(0,
1
2
)
时,f (x)+2<logax恒成立,试求实数a的取值范围.
(Ⅰ)∵函数f (x) 对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立
∴令x=1,y=0,f(1+0)-f(0)=1(1+2×0+1)?f(0)=-2…(3分)
(Ⅱ)令 y=0,可得  f(x)=x2+x-2…(5分)
(Ⅲ)f (x)+2<logax即  x2+x<logax
x∈(0,
1
2
)
,所以x2+x>0,
当a>1时,logax<0,说明a>1不合题意.…(7分)
设h(x)=x2+x-logax(0<x<
1
2
,0<a<1)
,即h(x)<0恒成立
因为h(x)=2x+1-
1
xlna

0<x<
1
2
,0<a<1
时,h'(x)>0恒成立…(9分)
所以 h(x)是增函数,有 h(x)<h(
1
2
)=
3
4
-loga
1
2
…(11分)
只需 
3
4
-loga
1
2
≤0
恒成立,解得  a≥2-
4
3

所以实数a的取值范围是 a≥2-
4
3
…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:
①在△ABC中,∠A>∠B是sinA>sinB的充要条件;
②某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,若用分层抽样的方法抽出一个容量为30的样本,则一般职员应抽出20人;
③如果函数f(x)对任意的x∈R都满足f(x)=-f(2+x),则函数f(x)是周期函数;
④已知点(
π
4
,0)和直线x=
π
2
分别是函数y=sin(ωx+φ)(ω>0)图象的一个对称中心和一条对称轴,则ω的最小值为2;其中正确结论的序号是
 
.(填上所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=
2-
x2
2
在(0,2)内具有“Lg”性质,且中值ξ=
2
,f′(ξ)=-
2
2

③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
x1+x2
2

其中你认为正确的所有命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1,a2,a3分别是表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 6 4 14
第三行 9 8 18
(1)求数列{an}的通项公式;
(2)若函数f(x)对任意的x∈R都有f(x)+f(1-x)=1,数列{bn}满足bn=f(0)+f(
1
n
)+f(
2
n
)+…
+f(
n-1
n
)+f(1)
,设cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•上海模拟)设f(x)是R上的奇函数,对任意实数x都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:x=1是函数f(x)的一条对称轴
(2)证明函数f(x)是以4为周期的函数,并求x∈[1,5]时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意x∈R,函数f(x)同时具有下列性质:①f(x+π)=f(x);②函数f(x)的一条对称轴是x=
π
3
,则函数f(x)可以是(  )
A、f(x)=sin(
x
2
+
π
6
B、f(x)=sin(2x-
π
6
C、f(x)=cos(2x-
π
6
D、f(x)=cos(2x-
π
3

查看答案和解析>>

同步练习册答案