精英家教网 > 高中数学 > 题目详情
20.已知tanα=m(m∈R),α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求角α.

分析 由条件利用反正切函数的定义,求得α的值.

解答 解:∵tanα=m(m∈R),α∈(-$\frac{π}{2}$,$\frac{π}{2}$),当m=0时,α=0;
当m>0时,由tanα=m(m∈R),可得α∈(0,$\frac{π}{2}$),α=arctanm;
当m<0时,由tanα=m(m∈R),可得α∈(-$\frac{π}{2}$,0),α=arctanm;
综上可得,角α=arctanm.

点评 本题主要考查反正切函数的定义,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an},a2=3,a5=9.
(1)求数列{an}的通项公式an
(2)令bn=c${\;}^{{a}_{n}}$,其中c为常数,且c>0,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设数列(an}的前n项和为Sn,且a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),则S2n+3=$\frac{{4}^{n+2}-1}{3•{4}^{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在x轴上取一点P,使它与两点A(1,2),B(5,3)的距离之和最小,并求出最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}各项均为正数,${a_1}=\frac{1}{2}$,且对任意的n∈N*,有${a_{n+1}}={a_n}+c{a_n}^2(c>0)$.
(Ⅰ)求证:$\sum_{i=1}^n{\frac{c}{{1+c{a_i}}}}<2$;
(Ⅱ)若$c=\frac{1}{2016}$,是否存在n∈N*,使得an>1,若存在,试求出n的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-2alnx(a∈R且a>0),若关于方程f(x)=2ax有两个相异的实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.$\frac{cos75°-cos15°}{sin15°+sin75°}$=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设三条不同的直线分别为m,n,l,两个不同的平面分别为α,β.则下列说法正确的是(  )
A.若m∥n,n?α,则m∥α
B.若m,n为异面直线,且m?α,n?β,则α∥β
C.若m⊥n,α⊥β,m⊥α,则n⊥β
D.若m∥α,m∥β,α∩β=l,则m∥l

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{2sinxcosx+\frac{5}{2}}{sinx+cosx}$,求f($\frac{π}{12}$)的值.

查看答案和解析>>

同步练习册答案