精英家教网 > 高中数学 > 题目详情
11.设数列(an}的前n项和为Sn,且a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),则S2n+3=$\frac{{4}^{n+2}-1}{3•{4}^{n+1}}$.

分析 通过分组可知S2n+3表示的是以1为首项、$\frac{1}{4}$为公比的等比数列的前n+2项和,进而计算可得结论.

解答 解:依题意,S2n+3=a1+(a2+a3)+(a4+a5)+…+(a2n+2+a2n+3
=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{2n+2}}$
=1+$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{4}^{n+1}}$
=$\frac{1-\frac{1}{{4}^{n+2}}}{1-\frac{1}{4}}$
=$\frac{{4}^{n+2}-1}{3•{4}^{n+1}}$,
故答案为:$\frac{{4}^{n+2}-1}{3•{4}^{n+1}}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查分组法求和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在区间[481,720]的人数为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.sin15°sin75°=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2cos2x+sin(2x-$\frac{π}{6}$)-1.(x∈R).
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数f(x)的图象经过点(A,$\frac{1}{2}$),若b+c=2a,$\overrightarrow{AB}$•$\overrightarrow{AC}$=6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在四棱锥S-ABCD中,找出并表示所有的异面直线和二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x>0,y>0,且($\frac{x-y}{2}$)2=$\frac{4}{xy}$,则当x+y取最小值时,x2+y2=(  )
A.24B.22C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$z=\frac{2-i}{i^3}$(其中i是虚数单位,满足i2=-1),则z的共轭复数是(  )
A.1-2iB.1+2iC.-1-2iD.-1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα=m(m∈R),α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在(x+$\frac{1}{x}$)4(2x-1)6的展开式中,常数项为(  )
A.6B.240C.480D.486

查看答案和解析>>

同步练习册答案