精英家教网 > 高中数学 > 题目详情

某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

(1)频率分布表:

分组
频数
频率
 
分组
频数
频率
[41,51)
2

 
[81,91)
10

[51,61)
1

 
[91,101)
5

[61,71)
4

 
[101,111)
2

[71,81)
解析试题分析:(1)频率分布表:
分组
频数
频率
 
分组
频数
频率
[41,51)
2

 
[81,91)
10

[51,61)
1

 
[91,101)
5

[61,71)
4

 
[101,111)
2

[71,81)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了了解某班的男女生学习体育的情况,按照分层抽样分别抽取了10名男生和5名女生作为样本,他们期末体育成绩的茎叶图如图所示,其中茎为十位数,叶为个位数。

(Ⅰ)若该班男女生平均分数相等,求x的值;
(Ⅱ)若规定85分以上为优秀,在该10名男生中随机抽取2名,优秀的人数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:

答对题目个数
0
1
2
3
人数
5
10
20
15
根据上表信息解答以下问题:
(Ⅰ)从50名学生中任选两人,求两人答对题目个数之和为4或5的概率;
(Ⅱ)从50名学生中任选两人,用X表示这两名学生答对题目个数之差的绝对值,求随机变量X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人各抽一道(不重复).
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一人抽到选择题的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:

处罚金额x(元)
0
5
10
15
20
会闯红灯的人数y
80
50
40
20
10
若用表中数据所得频率代替概率.现从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
(Ⅰ)求这两种金额之和不低于20元的概率;
(Ⅱ)若用X表示这两种金额之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A、B两个试验方案在某科学试验中成功的概率相同,已知A、B两个方案至少一个方案试验成功的概率是0.36.
(1)求两个方案均获成功的概率;
(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施。若实施方案一,预计第一年可以使出口额恢复到危机前的倍、倍、倍的概率分别为;第二年可以使出口额为第一年的倍、倍的概率分别为。若实施方案二,预计第一年可以使出口额恢复到危机前的倍、倍、倍的概率分别为;第二年可以使出口额为第一年的倍、倍的概率分别为。实施每种方案第一年与第二年相互独立。令表示方案实施两年后出口额达到危机前的倍数。
(1)写出的分布列;
(2)实施哪种方案,两年后出口额超过危机前出口额的概率更大?
(3)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为万元、万元、万元,问实施哪种方案的平均利润更大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为,求的分布列;
(3)随机选取3件产品,求这三件产品都不能通过检测的概率.

查看答案和解析>>

同步练习册答案