精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn.已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围.
(2)指出S1,S2,…,S12中哪一个值最大,并说明理由.
分析:(1)由S12>0,S13<0,利用等差数列的前n项和的公式化简分别得到①和②,然后利用等差数列的通项公式化简a3得到首项与公差的关系式,解出首项分别代入到①和②中得到关于d的不等式组,求出不等式组的解集即可得到d的范围;
(2)根据(1)中d的范围可知d小于0,所以此数列为递减数列,在n取1到12中的正整数中只要找到有一项大于0,它的后一项小于0,则这项与之前的各项相加就最大,根据S12>0,S13<0,利用等差数列的性质及前n项和的公式化简可得S1,S2,…,S12中最大的项.
解答:解:(1)依题意,有S12=12a1+
12×(12-1)
2
•d>0

S13=13a1+
13×(13-1)
2
•d<0

2a1+11d>0①
a1+6d<0②

由a3=12,得a1=12-2d③,
将③式分别代①、②式,得
24+7d>0
3+d<0

-
24
7
<d<-3.

(2)由d<0可知a1>a2>a3>…>a12>a13
因此,若在1≤n≤12中存在自然数n,使得an>0,an+1<0,
则Sn就是S1,S2,…,S12中的最大值.
?
6(a1+a12)=6(a6+a7)>0
13
2
(a1+a13)=
26a7
2
=13a7<0

∴a6>0,a7<0,
故在S1,S2,…,S12中S6的值最大.
点评:本小题考查数列、不等式及综合运用有关知识解决问题的能力,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案