精英家教网 > 高中数学 > 题目详情
1.已知圆的方程为x2+y2-6x=0,过点(1,2)的该圆的三条弦的长a1,a2,a3构成等差数列,则数列a1,a2,a3的公差的最大值是2.

分析 化圆的一般方程为标准方程,求出圆心坐标和半径,得到最大弦长,再求出过P且垂直于CP的弦的弦长,即最小弦长,然后利用等差数列的通项公式求得公差得答案.

解答 解:如图,由x2+y2-6x=0,得(x-3)2+y2=9,
∴圆心坐标C(3,0),半径r=3,

由圆的性质可知,过点P(1,2)的该圆的弦的最大值为圆的直径,等于6,
最小值为过P且垂直于CP的弦的弦长,
∵|CP|=$\sqrt{(3-1)^{2}+(0-2)^{2}}=2\sqrt{2}$,
∴|AB|=2$\sqrt{{3}^{2}-(2\sqrt{2})^{2}}=2$,
即a1=2,a3=6,
∴公差d的最大值为$\frac{{a}_{3}-{a}_{1}}{2}=\frac{6-2}{2}=2$.
故答案为:2.

点评 本题考查圆的性质,考查了等差数列的通项公式,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=x2-2x.若x∈[4,6)时,不等式f(x)≥$\frac{t}{4}$-$\frac{1}{2t}$恒成立,则t的取值范围为(  )
A.[-2,0)∪[1,+∞)B.(-∞,2]∪(0,1]C.[-2,0)∪(0,1)D.[-2,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.(提示:设G是DD1的中点,分别连接EG,GC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数y=cosx[cosx-cos(x+$\frac{π}{3}$)].求
(1)该函数的周期;
(2)单调递减区间;
(3)最大值和最小值,并写出求得最值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设M={三棱锥},N={侧棱相等的三棱锥},P={正三棱锥},Q={正四面体},则这些集合的关系是Q⊆P⊆N⊆M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=Asin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象如图所示,若$\overrightarrow{PQ}$•$\overrightarrow{QS}$=$\frac{{π}^{2}}{8}$-8,则函数f(x)的解析式为(  )
A.f(x)=2sin(3x-$\frac{π}{4}$)B.f(x)=2sin(3x+$\frac{π}{4}$)C.f(x)=2sin(2x+$\frac{π}{3}$)D.f(x)=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设lg2=a,则lg50=(  )
A.2-aB.1-aC.1+aD.2+a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:$\frac{1}{cos2θ}$-tanθtan2θ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a∈R,且复数$\frac{a}{1+i}$+$\frac{1+i}{2}$是纯虚数,则a=-1.

查看答案和解析>>

同步练习册答案