精英家教网 > 高中数学 > 题目详情
11.“a=-1”是“直线ax+3y+3=0与直线x+(a-2)y-3=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据直线平行的等价条件求出a的值,结合充分条件和必要条件的定义进行判断即可.

解答 解:当a=-1时,两直线方程为-x+3y+3=0和x-3y-3=0,此时两直线重合,不满足条件.
若直线ax+3y+3=0与直线x+(a-2)y-3=0平行,
若a=0时,两直线方程为3y+3=0和x-2y-3=0,此时两直线相交,不满足条件.
若a≠0,若两直线平行,则$\frac{1}{a}=\frac{a-2}{3}$$≠\frac{-3}{3}$,
由$\frac{1}{a}=\frac{a-2}{3}$得a(a-2)=3,即a2-2a-3=0,得a=-1或a=3,
当a=-1时,两直线重合,∴a=3,
则“a=-1”是“直线ax+3y+3=0与直线x+(a-2)y-3=0平行”的既不充分也不必要条件,
故选:D

点评 本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件求出a的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图,在三棱锥A-BCD中,E是AC中点,F在线段AD上,且FD=3AF,则三棱锥A-BEF的体积与四棱锥B-ECDF的体积的比值为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合$A=\left\{{y\left|{y={{(\frac{1}{2})}^x}+1}\right.}\right\}$,集合B={y|y=b,b∈R},若A∩B=∅,则b的取值范围是(  )
A.b<0B.b≤0C.b<1D.b≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC中,BC=1,A=120°,∠B=θ,记f(θ)=$\overrightarrow{BC}•\overrightarrow{AC}$,
①求f(θ)关于θ的表达式.
②求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知菱形ABCD的边长为4,∠BAD=150°,点E,F分别在边BC,CD上,2CE=3EB,DC=λDF(λ∈R,λ≠0),若$\overrightarrow{AE}•\overrightarrow{AF}=\frac{42}{5}({1-\sqrt{3}})$,则λ的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{2π}{3}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知梯形ABCD中,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,P是DC的中点,则|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=(  )
A.$\frac{\sqrt{82}}{2}$B.2$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.当实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$时,目标函数z=ax+y的最大值为3,则实数a的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上随机取一个数x,cos2$\frac{x}{2}$-sin2$\frac{x}{2}$的值介于0和$\frac{1}{2}$之间的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案