分析 (1)利用(1+x)3+(1+x)4+…+(1+x)n+2的展开式中含x2项的系数是11n得到关于n 的等式解出n;
(2)利用(1)的结论,求系数最大项.
解答 解:(1)因为(1+x)3+(1+x)4+…+(1+x)n+2的展开式中
含x2项的系数是${C}_{3}^{2}+{C}_{4}^{2}+…+{C}_{n+2}^{2}$=11n,解得n=5;
(2)由(1)得(2x+$\frac{1}{x}$)10,所以展开式通项为${C}_{10}^{r}(2x)^{10-r}(\frac{1}{x})^{r}$=${2}^{10-r}{C}_{10}^{r}{x}^{10-2r}$,
设系数最大项为Tr+1,所以$\left\{\begin{array}{l}{{2}^{10-r}{C}_{10}^{r}≥{2}^{9-r}{C}_{10}^{r+1}}\\{{2}^{10-r}{C}_{10}^{r}≥{2}^{11-r}{C}_{10}^{r-1}}\end{array}\right.$,r∈Z,解得r=3,
所以系数最大项为${T}_{3+1}={2}^{7}{C}_{10}^{3}{x}^{4}$=15360x4.
点评 本题考查了二项式定理的运用;关键是明确展开式的通项,从图象入手,找出满足特征项的r值.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 办理业务所需的时间(分) | 10 | 20 | 30 | 40 | 50 |
| 频率 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | P1>P2 | B. | P1=P2 | ||
| C. | P1<P2 | D. | P1与P2的大小不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com