精英家教网 > 高中数学 > 题目详情
13.已知(1+x)3+(1+x)4+…+(1+x)n+2的展开式中含x2项的系数是11n
(1)求n的值;
(2)求(2x+$\frac{1}{x}$)2n的展开式中,系数最大的项.

分析 (1)利用(1+x)3+(1+x)4+…+(1+x)n+2的展开式中含x2项的系数是11n得到关于n 的等式解出n;
(2)利用(1)的结论,求系数最大项.

解答 解:(1)因为(1+x)3+(1+x)4+…+(1+x)n+2的展开式中
含x2项的系数是${C}_{3}^{2}+{C}_{4}^{2}+…+{C}_{n+2}^{2}$=11n,解得n=5;
(2)由(1)得(2x+$\frac{1}{x}$)10,所以展开式通项为${C}_{10}^{r}(2x)^{10-r}(\frac{1}{x})^{r}$=${2}^{10-r}{C}_{10}^{r}{x}^{10-2r}$,
设系数最大项为Tr+1,所以$\left\{\begin{array}{l}{{2}^{10-r}{C}_{10}^{r}≥{2}^{9-r}{C}_{10}^{r+1}}\\{{2}^{10-r}{C}_{10}^{r}≥{2}^{11-r}{C}_{10}^{r-1}}\end{array}\right.$,r∈Z,解得r=3,
所以系数最大项为${T}_{3+1}={2}^{7}{C}_{10}^{3}{x}^{4}$=15360x4

点评 本题考查了二项式定理的运用;关键是明确展开式的通项,从图象入手,找出满足特征项的r值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.定义:使函数y=f(x)的函数值为零的x的值叫函数y=f(x)的幸运点(如:y=x2-2x+1的幸运点为x=1,y=x2-2x-3的幸运点为x=3,x=-1;y=x+1的幸运点为x=-1),设f(x)=$\left\{\begin{array}{l}{(x+1)^{2}-3(x≤1)}\\{\frac{1}{x}(x>1)}\end{array}\right.$,若g(x)=f(x)-b恰好有两个幸运点,则实数b的取值范围为(-3,0]∪{1}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察下列等式:
-1=-1;
-1+3=2;
-1+3-5=-3;
-1+3-5+7=4;

(1)照此规律,归纳猜想出第n个等式
(2)用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.电视剧《人民的名义》中有一个低矮的接待上访服务窗口,假设群众办理业务所需的时间互相独立,且都是10分钟的整数倍,对以往群众办理业务所需的时间统计结果如下:
办理业务所需的时间(分)1020304050
频率0.30.30.20.10.1
假设排队等待办理业务的群众不少于3人,从第一个群众开始办理业务时开始计时.
(Ⅰ)估计第三个群众恰好等待40分钟开始办理业务的概率;
(Ⅱ)X表示至第20分钟末已办理完业务的群众人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于不等式1+$\sqrt{6}$<$\sqrt{3}$+2,$\sqrt{2}$$+\sqrt{7}$<2+$\sqrt{5}$,$\sqrt{3}$+2$\sqrt{2}$<$\sqrt{5}$+$\sqrt{6}$,它们都是正确的.
(Ⅰ) 根据上面不等式的规律,猜想$\sqrt{n}$+$\sqrt{n+5}$与$\sqrt{n+2}$+$\sqrt{n+3}$(n∈N+)的大小并加以证明:
(Ⅱ) 若不等式$\sqrt{n+a}$+$\sqrt{n+b}$<$\sqrt{n+c}$+$\sqrt{n+d}$(n∈N*)成立,请你写出a,b,c,d所满足的一个等式和一个不等式,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数a满足-3<a<4,函数f(x)=lg(x2+ax+1)的值域为R的概率为P1,定义域为R的概率为P2,则(  )
A.P1>P2B.P1=P2
C.P1<P2D.P1与P2的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销得到如下数据
 单价x(元) 8 8.2 8.4 8.6 8.8 9
 销量y(件) 90 84 83 80 75 68
由表中数据,求得线性回归直线方程$\stackrel{∧}{y}$=-20x+$\stackrel{∧}{a}$,若在这样本点中任取一点,则它在回归直线左下方的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设△ABC内角A,B,C的对边分别为a,b,c,2sinCsinB=sinB-sin(A-C).
(I)判断△ABC的形状;
(Ⅱ)当B为钝角时,求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个长方体的八个顶点都在球面上,长方体的长、宽、高分别为$\sqrt{3},\sqrt{2},\sqrt{2}$,则球的表面积是7π.

查看答案和解析>>

同步练习册答案