精英家教网 > 高中数学 > 题目详情
4.观察下列等式:
-1=-1;
-1+3=2;
-1+3-5=-3;
-1+3-5+7=4;

(1)照此规律,归纳猜想出第n个等式
(2)用数学归纳法证明(1)中的猜想.

分析 (1)利用归纳推理以及所给式子的结构特征,得出结论-1+3-5+…+(-1)n(2n-1)=(-1)n•n.
(2)先证明n=1时,等式成立,假设n=k时,等式成立,即-1+3-5+…+(-1)k(2k-1)=(-1)k•k,在此基础上利用假设证明n=k+1时,等式也成立,从而得到等式对任意的n∈N*均成立.

解答 解:(1)观察等式:-1=-1,-1+3=2,-1+3-5=-3,-1+3-5+7=4,…
可得-1+3-5+…+(-1)n(2n-1)=(-1)n•n.
(2)证明:①n=1时,左式=右式=-1,等式成立.
②假设n=k时,等式成立,即-1+3-5+…+(-1)k(2k-1)=(-1)k•k,
则当n=k+1时,
左式=-1+3-5+…+(-1)k(2k-1)+(-1)k+1(2k+1)
=(-1)k•k+(-1)k+1(2k+1)
=(-1)k+1(-k+2k+1)
=(-1)k+1(k+1)=右式,
即n=k+1时,等式成立.
根据①,②,等式对任意的n∈N*均成立.

点评 本题主要考查归纳推理,用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,式子的变形是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知点A(1,-2),若向量$\overrightarrow{AB}$与$\overrightarrow{a}$=(2,3)同向,|$\overrightarrow{AB}$|=2$\sqrt{13}$,则点B的坐标为(  )
A.(4,6)B.(-4,-6)C.(5,4)D.(-5,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=$\frac{\sqrt{3}}{2}$,且过点($\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)过F2的直线m交椭圆C于不同的两点M、N,试求△F1MN面积最大时直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x+y+3=0,则$\sqrt{(x-2)^{2}+(y-1)^{3}}$的最小值为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=(x2+ax-1)ex-1的一个极值点为x=1,则f(x)的极大值为(  )
A.-1B.-2e-3C.5e-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{e}^{x}}{x}$
(Ⅰ)求函数f(x)的图象在x=1处的切线方程
(Ⅱ)求f(x)在[t,t+1](t>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=log${\;}_{\frac{1}{2}}$[cos(-$\frac{x}{3}$-$\frac{π}{4}$)]的单调递增区间为[6kπ-$\frac{3π}{4}$,6kπ+$\frac{3π}{4}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知(1+x)3+(1+x)4+…+(1+x)n+2的展开式中含x2项的系数是11n
(1)求n的值;
(2)求(2x+$\frac{1}{x}$)2n的展开式中,系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个六面体的三视图如图所示,其侧视图是边长为2的正方形,则该六面体的表面积是(  )
A.$18+2\sqrt{5}$B.$16+2\sqrt{5}$C.$14+2\sqrt{5}$D.$12+2\sqrt{5}$

查看答案和解析>>

同步练习册答案