精英家教网 > 高中数学 > 题目详情
19.函数f(x)=(x2+ax-1)ex-1的一个极值点为x=1,则f(x)的极大值为(  )
A.-1B.-2e-3C.5e-3D.1

分析 求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极大值即可.

解答 解:函数f(x)=(x2+ax-1)ex-1
可得f′(x)=(2x+a)ex-1+(x2+ax-1)ex-1
x=1是函数f(x)=(x2+ax-1)ex-1的极值点,
可得:2+a+a=0.
解得:a=-1;
可得f′(x)=(2x-1)ex-1+(x2-x-1)ex-1=(x2+x-2)ex-1
函数的极值点为:x=-2,x=1,
当x<-2或x>1时,f′(x)>0函数是增函数,x∈(-2,1)时,函数是减函数,
x=-2时,函数取得极大值:f(-2)=5e-3
故选:C.

点评 本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若${∫}_{0}^{\frac{π}{6}}$cosxdx=${∫}_{0}^{a}$x2dx,则a3等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3\sqrt{3}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.2π+4D.3π+4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=x3-ax+1在点(1,f(1))处的切线与直线x+4y=0垂直,则实数a等于(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图执行右面的程序框图,输入m=4,那么输出的S等于(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察下列等式:
-1=-1;
-1+3=2;
-1+3-5=-3;
-1+3-5+7=4;

(1)照此规律,归纳猜想出第n个等式
(2)用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某市重点中学奥数培训班共有15人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,甲组同学成绩的极差是m,乙组学生成绩的中位数是86,则m+n的值是(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于不等式1+$\sqrt{6}$<$\sqrt{3}$+2,$\sqrt{2}$$+\sqrt{7}$<2+$\sqrt{5}$,$\sqrt{3}$+2$\sqrt{2}$<$\sqrt{5}$+$\sqrt{6}$,它们都是正确的.
(Ⅰ) 根据上面不等式的规律,猜想$\sqrt{n}$+$\sqrt{n+5}$与$\sqrt{n+2}$+$\sqrt{n+3}$(n∈N+)的大小并加以证明:
(Ⅱ) 若不等式$\sqrt{n+a}$+$\sqrt{n+b}$<$\sqrt{n+c}$+$\sqrt{n+d}$(n∈N*)成立,请你写出a,b,c,d所满足的一个等式和一个不等式,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,是某组合体的三视图,则外部几何体的表面积为(  )
A.B.12πC.24πD.36π

查看答案和解析>>

同步练习册答案