8£®´º½ÚÆÚ¼ä£¬Ä³Î¢ÐÅȺÖ÷·¢60¸öËæ»úºì°ü£¨¼´Ã¿¸öÈËÇÀµ½µÄºì°üÖеÄÇ®ÊýÊÇËæ»úµÄ£¬ÇÒÿÈËÖ»ÄÜÇÀÒ»¸ö£©£¬ºì°ü±»Ò»ÇÀ¶ø¿Õ£¬ºó¾Ýͳ¼Æ£¬60¸öºì°üÖÐÇ®Êý£¨µ¥Î»£ºÔª£©·ÖÅäÈçÏÂÆµÂÊ·Ö²¼Ö±·½Í¼Ëùʾ£¨Æä·Ö×éÇø¼äΪ[0£¬1£©£¬[1£¬2£©£¬[2£¬3£©£¬[3£¬4£©£¬[4£¬5£©£©£®
£¨1£©ÊÔ¹À¼Æ¸ÃȺÖÐij³ÉÔ±ÇÀµ½Ç®Êý²»Ð¡ÓÚ3ÔªµÄ¸ÅÂÊ£»
£¨2£©ÈôȺÖ÷ÔÚÖ»ÇÀµ½2ÔªÒÔϵļ¸ÈËÖÐËæ»úÑ¡Ôñ3È˰ÝÄ꣬ÔòÑ¡ÖеÄÈýÈËÖÐÇÀµ½Ç®ÊýÔÚ1ÔªÒÔϵÄÈËÊýΪX£¬ÊÔÇóXµÄ·Ö²¼Áм°ÆÚÍû£®

·ÖÎö £¨1£©ÀûÓÃÆµÂÊ·Ö²¼Ö±·½Í¼µÄÐÔÖʼ´¿ÉµÃ³ö£»
£¨2£©ÇÀµ½1ÔªÒÔÏÂÈËÊýΪ£º0.05¡Á60=3£¬ÇÀµ½2ÔªÒÔÏÂÇÒ1Ôª£¨°üÀ¨1Ôª£©ÒÔÉϵÄÓÐ0.20¡Á60=12ÈË£®ÈºÖ÷ÔÚÖ»ÇÀµ½2ÔªÒÔϵÄ15ÈËÖÐËæ»úÑ¡Ôñ3È˰ÝÄ꣬ÔòÑ¡ÖеÄÈýÈËÖÐÇÀµ½Ç®ÊýÔÚ1ÔªÒÔϵÄÈËÊýΪX=0£¬1£¬2£¬3£¬ÀûÓá°³¬¼¸ºÎ·Ö²¼¡±µÄ¸ÅÂʼÆË㹫ʽ¡¢ÊýѧÆÚÍû¼´¿É¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼¿ÉµÃ£º1¡Á£¨0.05+0.20+0.40+t+0.10£©=1£¬½âµÃt=0.25£¬
¡à¸ÃȺÖÐij³ÉÔ±ÇÀµ½Ç®Êý²»Ð¡ÓÚ3ÔªµÄ¸ÅÂÊP=1¡Á£¨0.25+0.10£©=0.35£»
£¨2£©ÇÀµ½1ÔªÒÔÏÂÈËÊýΪ£º0.05¡Á60=3£¬ÇÀµ½2ÔªÒÔÏÂÇÒ1Ôª£¨°üÀ¨1Ôª£©ÒÔÉϵÄÓÐ0.20¡Á60=12ÈË£®
ȺÖ÷ÔÚÖ»ÇÀµ½2ÔªÒÔϵÄ15ÈËÖÐËæ»úÑ¡Ôñ3È˰ÝÄ꣬ÔòÑ¡ÖеÄÈýÈËÖÐÇÀµ½Ç®ÊýÔÚ1ÔªÒÔϵÄÈËÊýΪX=0£¬1£¬2£¬3£¬
P£¨X=0£©=$\frac{{∁}_{12}^{3}}{{∁}_{15}^{3}}$=$\frac{44}{91}$£¬P£¨X=1£©=$\frac{{∁}_{3}^{1}{∁}_{12}^{2}}{{∁}_{15}^{3}}$=$\frac{198}{455}$£¬P£¨X=2£©=$\frac{{∁}_{3}^{2}{∁}_{12}^{1}}{{∁}_{15}^{3}}$=$\frac{36}{455}$£¬P£¨X=3£©=$\frac{{∁}_{3}^{3}}{{∁}_{15}^{3}}$=$\frac{1}{455}$£®
¡àXµÄ·Ö²¼ÁÐΪ£º

x0123
p$\frac{44}{91}$$\frac{198}{455}$$\frac{36}{455}$$\frac{1}{455}$
¡àE£¨X£©=$0¡Á\frac{44}{91}+1¡Á\frac{198}{455}$+$2¡Á\frac{36}{455}$+3¡Á$\frac{1}{455}$=$\frac{273}{455}$£®

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼µÄÐÔÖÊ¡¢¡°³¬¼¸ºÎ·Ö²¼¡±µÄ¸ÅÂʼÆË㹫ʽ¡¢ÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èô|h|$¡Ü\frac{a}{4}$£¬|k|$¡Ü\frac{a}{6}$£¨aΪ³£Êý£©£¬Ôò|2h-3k|µÄ×î´óÖµÊÇa£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªf£¨x£©=xlnx£¬g£¨x£©=-x2+ax-6£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСֵ£»
£¨¢ò£©¶ÔÒ»ÇÐx¡Ê[3£¬+¡Þ£©ºãÓÐf£¨x£©¡Ýg£¨x£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©µ±x¡Ê£¨0£¬2¦Ð£©£¬ÇóÖ¤£ºlnx+cosx+$\frac{3¦Ð}{2x}¡Ý\frac{sinx}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪ¾ØÐÎPA¡ÍÆ½ÃæABCD£¬AB=PA=1£¬AD=$\sqrt{3}$£¬E£¬F£¬G·Ö±ðÊÇBC£¬PB£¬ADÉϵĵ㣬ÇÒAF¡ÍPC£¬AG=2GD£®
£¨1£©µ±BEΪºÎֵʱ£¬FG¡ÎÆ½ÃæPDE£»
£¨2£©µ±BEΪºÎֵʱ£¬¶þÃæ½ÇC-PE-DµÄÆ½Ãæ½ÇΪ45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax3-bx2+cx+b-a£®
£¨1£©Éèc=0£¬Èôa=b£¬f£¨x£©ÔÚx=x0´¦µÄÇÐÏß¹ýµã£¨1£¬0£©£¬Çóx0µÄÖµ£»
£¨2£©Éèf£¨x£©ÔÚx=x1£¬x=x2Á½´¦È¡µÃ¼«Öµ£¬ÇóÖ¤f£¨x1£©=x1£¬f£¨x2£©=x2²»Í¬Ê±³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ò»Ã¶ÖʵؾùÔȵÄÕýÁùÃæÌå÷»×Ó£¬Áù¸öÃæÉÏ·Ö±ð¿Ì×Å1µãÖÁ6µã£¬Ò»´ÎÓÎÏ·ÖУ¬¼×¡¢ÒÒ¶þÈ˸÷ÖÀ÷»×ÓÒ»´Î£¬Èô¼×ÖÀµÄÏòÉϵãÊý±ÈÒÒ´ó£¬Ôò¼×ÖÀµÄÏòÉϵãÊýµÄÊýѧÆÚÍûÊÇ$\frac{14}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®£¨Àí£©´Ó0£¬1£¬2£¬3£¬4Õâ5¸öÊýÖÐÈ¡3¸öÊý£¬¼ÇÖÐλÊýÊǦΣ¬ÔòÊýѧÆÚÍûE£¨¦Î£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÊµÊý¦Á£¬¦ÂÂú×ã$\left\{\begin{array}{l}{£¨¦Á-1£©^{3}+2007£¨¦Á-1£©=-1}\\{£¨¦Â-1£©^{3}+2007£¨¦Â-1£©=1}\end{array}\right.$£¬Ôò¦Á+¦ÂµÄÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚ¶àÃæÌåABC-A1B1C1ÖУ¬²àÃæAA1B1B¡Íµ×ÃæA1B1C1£¬ËıßÐÎAA1B1BÊǾØÐΣ¬A1C1=A1B1£¬¡ÏB1A1C1=120¡ã£¬BC¡ÎB1C1£¬B1C1=2BC£®
£¨1£©ÇóÖ¤£ºA1C¡ÍB1C1£»
£¨2£©µ±¶þÃæ½ÇC-AC1-B1µÄÕýÇÐֵΪ2ʱ£¬Çó$\frac{A{A}_{1}}{{A}_{1}{B}_{1}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸