精英家教网 > 高中数学 > 题目详情

已知定义在R上的奇函数f(x),满足数学公式,且f(1)=1,则f(2006)=________.

-1
分析:先由,可得函数的周期为3,就把f(2006)转化为f(2)=f(-1),再利用f(x)是奇函数即可求得结论.
解答:因为
∴有f(x+3)=f[(x+)+]=-f(x+)=f(x).
即函数的周期为3.
又因为2006=3×668+2.
所以f(2006)=f(2)=f(-1)
又有f(x)是奇函数得:f(-1)=-f(1)=-1.
故答案为:-1.
点评:本题主要考查函数的奇偶性和周期性,是对函数基本性质的考查,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案