精英家教网 > 高中数学 > 题目详情
在中学阶段,对许多特定集合(如整数集、有理数集、实数集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为?,对于A中的任意两个元素α=(a,b),β=(c,d),现规定:α?β=(ad+bc,bd-ac).
(1)计算:(2,3)?(-1,4);     
(2)A中是否存在元素γ满足:对于任意α∈A,都有γ?α=α成立,若存在,请求出元素γ;若不存在,请说明理由.
分析:(1)根据规定:α?β=(ad+bc,bd-ac),代入计算可得结论;
(2)根据新定义,利用γ?α=α,可得
bx+ay=a
by-ax=b
(a∈R,b∈R)恒成立,从而可得结论.
解答:解:(1)(2,3)?(-1,4)=(8-3,12+2)=(5,14)
(2)设元素γ=(x,y),α=(a,b),则γ?α=(bx+ay,by-ax,因为γ?α=α.
所以
bx+ay=a
by-ax=b
(a∈R,b∈R)恒成立,所以
x=0
y=1
,所以γ=(0,1)满足条件.
点评:本题考查新定义,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

科目:高中数学 来源: 题型:

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

科目:高中数学 来源:《第2章 推理与证明》2010年单元测试卷(解析版) 题型:解答题

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

科目:高中数学 来源:2009年上海市闸北区高考数学一模试卷(理科)(解析版) 题型:解答题

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

同步练习册答案