【题目】已知函数f(x)=cos(2x-),x∈R.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)求函数f(x)在区间[-,]上的最小值和最大值,并求出取得最值时x的值.
【答案】(1)π.,(2)最大值为,此时;最小值为,此时.
【解析】
试题分析:(1)首先分析题目中三角函数的表达式为标准型,则可以根据周期公式,递增区间直接求解即可;
(2)然后可以根据三角函数的性质解出函数的单调区间,再分别求出最大值最小值.
试题解析:
(1)f(x)的最小正周期T===π.
当2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z时,f(x)单调递减,
∴f(x)的单调递减区间是[kπ+,kπ+],k∈Z.
(2)∵x∈[-,],则2x-∈[-,],
故cos(2x-)∈[-,1],
∴f(x)max=,此时2x-=0,即x=;
f(x)min=-1,此时2x-=,即x=
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求证:AD⊥PB;
(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mlnx﹣x2+2(m∈R).
(1)当m=1时,求f(x)的单调区间;
(2)若f(x)在x=1时取得极大值,求证:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,当x≥1时,恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张收费元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.
(1)写出飞机票价格元与旅行团人数之间的函数关系式;
(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在三棱锥P﹣ABC中,PA⊥面ABC,AC⊥BC,且PA=AC=BC=1,点E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)求证:PB⊥平面AEF;
(Ⅱ)求二面角A﹣PB﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中不正确的是( )
A. 对于线性回归方程,直线必经过点
B. 茎叶图的优点在于它可以保存原始数据,并且可以随时记录
C. 将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变
D. 掷一枚均匀硬币出现正面向上的概率是,那么一枚硬币投掷2次一定出现正面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com