精英家教网 > 高中数学 > 题目详情

在△ABC中,a,b,c分别是∠A,∠B,∠C所对应的边,∠C=90°,则数学公式的取值范围是


  1. A.
    (1,2)
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:通过∠C=90°,得到sinC=1,然后利用正弦定理表示出a与b,代入,表示出,利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由A的范围求出这个角的范围,从而根据正弦函数的图象与性质得到正弦函数的值域,得到的范围.
解答:由正弦定理得:,又sinC=1,
∴a=csinA,b=csinB,
所以=,由A+B=90°,得到sinB=cosA,
=sinA+sinB=sinA+cosA=sin(A+),
∵∠C=∴A∈(0,),∴sin(A+)∈( ,1],
∈(1,].
故选C.
点评:此题考查了正弦定理,两角和与差的正弦函数公式及特殊角的三角函数值.根据正弦定理表示出a与b是本题的突破点,同时要求学生掌握正弦函数的值域的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案