精英家教网 > 高中数学 > 题目详情
15.正实数x、y满足x+y=1,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为(  )
A.3B.4C.2$\sqrt{2}$D.3+2$\sqrt{2}$

分析 运用乘1法,可得$\frac{2}{x}$+$\frac{1}{y}$=(x+y)($\frac{2}{x}$+$\frac{1}{y}$)=3+$\frac{x}{y}$+$\frac{2y}{x}$,再由基本不等式计算即可得到所求最小值及相应x,y的值.

解答 解:正实数x、y满足x+y=1,可得:
$\frac{2}{x}$+$\frac{1}{y}$=(x+y)($\frac{2}{x}$+$\frac{1}{y}$)=3+$\frac{x}{y}$+$\frac{2y}{x}$≥3+2$\sqrt{\frac{x}{y}•\frac{2y}{x}}$=3+2$\sqrt{2}$.
当且仅当x=$\sqrt{2}$y=2-$\sqrt{2}$,取得最小值3+2$\sqrt{2}$.
故选:D.

点评 本题考查基本不等式的运用:求最值,注意运用乘1法和满足的条件:一正二定三等,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax+b(a≠0,b≠0).
(Ⅰ)若函数f(x)的图象在点(0,f(0))处的切线方程为y=2,求f(x)在区间[-2,1]上的最值;
(Ⅱ)若a=-b,试讨论函数f(x)在区间(1,+∞)上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$),f(0)=-$\frac{{\sqrt{3}}}{2}$,且函数f(x)图象上的任意两条对称轴之间距离的最小值是$\frac{π}{2}$.
(I)求函数f(x)的解析式;
(II)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(Ⅰ)当a>0时,讨论f(x)的单调区间;
(Ⅱ)设g(x)=x-$\frac{a}{2}$lnx,当f(x)有两个极值点为x1,x2,且x1∈(0,e]时,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.从某高中随机选取5名高三男生,其身高和体重的数据如表所示:
身高x(cm)160165170175180
体重y(kg)6569m7274
根据上表得到的回归直线方程为$\hat y$=0.5x-15,则m的值为70.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=x2,g(x)=$(\frac{1}{2})^x}$-m,若对?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2),则m的取值范围为(  )
A.$[{\frac{1}{2},+∞})$B.$[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{2}}]$D.$({-∞,\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示,若其正视图、侧视图的轮廓都是边长为1的菱形,俯视图是边长为1的正方形,则该几何体的体积为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四边形ABCD中,△ABC是边长为6的正三角形,设$\overrightarrow{BD}=x\overrightarrow{BA}+y\overrightarrow{BC}$(x,y∈R).
(1)若x=y=1,求|$\overrightarrow{BD}$|;
(2)若$\overrightarrow{BD}•\overrightarrow{BC}$=36,$\overrightarrow{BD}•\overrightarrow{BA}$=54,求x,y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=$\sqrt{2}$,AB=CC1=2,∠BCC1=$\frac{π}{4}$,点E在棱BB1上.
(1)求C1B的长,并证明C1B⊥平面ABC;
(2)若BE=λBB1,试确定λ的值,使得二面角A-C1E-C的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案