精英家教网 > 高中数学 > 题目详情
4.如图,在四边形ABCD中,△ABC是边长为6的正三角形,设$\overrightarrow{BD}=x\overrightarrow{BA}+y\overrightarrow{BC}$(x,y∈R).
(1)若x=y=1,求|$\overrightarrow{BD}$|;
(2)若$\overrightarrow{BD}•\overrightarrow{BC}$=36,$\overrightarrow{BD}•\overrightarrow{BA}$=54,求x,y.

分析 (1)x,y=1时,根据向量加法的平行四边形法则,以及等边三角形的中线也是高线便可求出BD的长度,即求出$|\overrightarrow{BD}|$的值;
(2)可设BD=d,∠DBC=θ,根据条件及向量数量积的计算公式便可得出不等式组$\left\{\begin{array}{l}{6dcosθ=36}\\{6dcos(60°-θ)=54}\end{array}\right.$,解该不等式组可求出d的大小,然后对$\overrightarrow{BD}=x\overrightarrow{BA}+y\overrightarrow{BC}$两边平方即可得出${x}^{2}+xy+{y}^{2}=\frac{7}{3}$①;再根据该问的条件可得到方程x-y=1②,这样两式联立即可求出x,y的值.

解答 解:(1)如图,

若x=y=1,则$\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}$;
∴BD过AC的中点E,且BD=2BE=$6\sqrt{3}$;
即$|\overrightarrow{BD}|=6\sqrt{3}$;
(2)设∠DBC=θ,则∠DBA=60°-θ,设BD=d;
∴由$\overrightarrow{BD}•\overrightarrow{BC}=36$,$\overrightarrow{BD}•\overrightarrow{BA}=54$得:
$\left\{\begin{array}{l}{6dcosθ=36}\\{6dcos(60°-θ)=54}\end{array}\right.$;
解得,cos$θ=\frac{\sqrt{3}}{\sqrt{7}}$,d=$2\sqrt{21}$;
∴${\overrightarrow{BD}}^{2}={x}^{2}{\overrightarrow{BA}}^{2}+2xy\overrightarrow{BA}•\overrightarrow{BC}+{y}^{2}{\overrightarrow{BC}}^{2}$;
即84=36x2+36xy+36y2,整理得,${x}^{2}+xy+{y}^{2}=\frac{7}{3}$①;
且$\overrightarrow{BD}•(\overrightarrow{BA}-\overrightarrow{BC})=\overrightarrow{BD}•\overrightarrow{CA}=18$;
∴$x\overrightarrow{BA}•\overrightarrow{CA}+y\overrightarrow{BC}•\overrightarrow{CA}$=18x-18y=18;
∴x-y=1②;
①②联立得,$y=\frac{1}{3},或-\frac{4}{3}$(舍去),x=$\frac{4}{3}$.

点评 考查向量加法的平行四边形法则,向量减法的几何意义,以及等边三角形的性质,向量数量积的运算及计算公式,消元法解方程组.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知a=30.5,b=($\frac{1}{2}$)1.1,c=log2$\sqrt{2}$,则a、b、c大小关系正确的是(  )
A.c<a<bB.a<b<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正实数x、y满足x+y=1,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为(  )
A.3B.4C.2$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-3x-1,其定义域是[-3,2].
(1)求f(x)在其定义域内的极大值和极小值;
(2)若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆锥的底面半径为1,高为$2\sqrt{2}$,则该圆锥的侧面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC.
(Ⅰ)求证:OE⊥FC:
(Ⅱ)若$\frac{AC}{AB}$=$\frac{\sqrt{3}}{2}$时,求二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=2x2-4x+1,则f(x)的最小值为(  )
A.-3B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知矩阵A=$[\begin{array}{l}1\\-1\end{array}\right._{\;}^{\;}\left.\begin{array}{l}2\\ 4\end{array}]$,求矩阵A的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥B-ACDE中,AE⊥平面ABC,CD∥AE,∠ABC=3∠BAC=90°,BF⊥AC于F,AC=4CD=4,AE=3.
(I)求证:BE⊥DF;
(II)求二面角B-DE-F的平面角的余弦值.

查看答案和解析>>

同步练习册答案