精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=2x2-4x+1,则f(x)的最小值为(  )
A.-3B.-2C.-1D.1

分析 将函数f(x)配方,即为f(x)=2(x-1)2-1,由二次函数的性质,即可得到所求最小值.

解答 解:函数f(x)=2x2-4x+1=2(x2-2x)+1=2(x-1)2-1,
当x=1时,f(x)取得最小值,且为-1.
故选:C.

点评 本题考查二次函数的最值的求法,注意运用配方法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$),f(0)=-$\frac{{\sqrt{3}}}{2}$,且函数f(x)图象上的任意两条对称轴之间距离的最小值是$\frac{π}{2}$.
(I)求函数f(x)的解析式;
(II)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示,若其正视图、侧视图的轮廓都是边长为1的菱形,俯视图是边长为1的正方形,则该几何体的体积为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四边形ABCD中,△ABC是边长为6的正三角形,设$\overrightarrow{BD}=x\overrightarrow{BA}+y\overrightarrow{BC}$(x,y∈R).
(1)若x=y=1,求|$\overrightarrow{BD}$|;
(2)若$\overrightarrow{BD}•\overrightarrow{BC}$=36,$\overrightarrow{BD}•\overrightarrow{BA}$=54,求x,y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的几何体中,四边形ABCD为平行四边形,∠ABC=45°,AB=AC=AE=2EF,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.
(1)若M是线段AD的中点,求证:GM∥平面ABFE;
(2)求二面角A-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,M、N分别是棱AA1、AD的中点,设E是棱AB的中点.
(1)求证:MN∥平面CEC1;(2)求平面D1EC1与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=$\sqrt{2}$,AB=CC1=2,∠BCC1=$\frac{π}{4}$,点E在棱BB1上.
(1)求C1B的长,并证明C1B⊥平面ABC;
(2)若BE=λBB1,试确定λ的值,使得二面角A-C1E-C的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1,在直角梯形ADCE中,AD∥EC,∠ADC=90°,AB⊥EC,AB=EB=1,$BC=\sqrt{2}$.将△ABE沿AB折到△ABE1的位置,使∠BE1C=90°.M,N分别为BE1,CD的中点.如图2.
(Ⅰ)求证:MN∥平面ADE1
(Ⅱ)求证:AM⊥E1C;
(Ⅲ)求平面AE1N与平面BE1C所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案