精英家教网 > 高中数学 > 题目详情

数学公式
(Ⅰ)若函数f(x)在区间(1,4)内单调递减,求a的取值范围;
(Ⅱ)若函数f(x)在x=a处取得极小值是1,求a的值,并说明在区间(1,4)内函数f(x)的单调性.

解:f'(x)=3x2-3(a+1)x+3a=3(x-1)(x-a)(2分)
(1)∵函数f(x)在区间(1,4)内单调递减,
∴f'(4)≤0,∴a∈[4,+∞);(5分)
(2)∵函数f(x)在x=a处有极值是1,
∴f(a)=1,即
∴a2(a-3)=0,所以a=0或3,(8分)
当a=0时,f(x)在(-∞,0)上单调递增,在(0,1)上单调递减,
所以f(0)为极大值,这与函数f(x)在x=a处取得极小值是1矛盾,所以a¹0.(10分)
当a=3时,f(x)在(1,3)上单调递减,在(3,+∞)上单调递增,
所以f(3)为极小值,所以a=3.
此时,在区间(1,4)内函数f(x)的单调性是:f(x)在(1,3)内减,在[3,4)内增.
分析:(1)先求出导函数f'(x),然后根据函数f(x)在区间(1,4)内单调递减,则f'(4)≤0,可求出a的范围;
(2)根据函数f(x)在x=a处有极值是1,可知f(a)=1建立等式,解之即可求出a,然后将求出的a分别进行验证,从而求出在区间(1,4)内函数f(x)的单调性.
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,以及极值等有关知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+3x2-3x,m∈R.
(Ⅰ)若函数f(x)在x=-1处取得极值,试求m的值,并求f(x)在点M(1,f(1))处的切线方程;
(Ⅱ)设m<0,若函数f(x)在(2,+∞)上存在单调递增区间,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>1,若函数f(x)=loga(ax2-x)在区间[
12
,4]上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)设a>0,若函数f(x)在区间(a,a+
1
2
)上存在极值,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k2-k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+3x2-3x,m∈R.
(1)若函数f(x)在x=-1处取得极值,求m的值;
(2)设m<0,若函数f(x)在(2,+∞)上存在单调递增区间,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则a=
 

查看答案和解析>>

同步练习册答案